M.Sc. ELECTRONICS First Semester ENGINEERING MATHEMATICS & STATISTICS (MSE - 101)

Duration: 3Hrs.

Full Marks: 70

Part-A (Objective) =20 Part-B (Descriptive) =50

(PART-B: Descriptive)

Duration: 2 hrs. 40 mins.

Marks: 50

Answer any five of the following questions:

1. Define Z-transform and inverse Z-transform. If $Z[\{f(k)\}]=F(z)$, then prove

$$Z[\{kf(k)\}] = -z \frac{d}{dz} F(z) \text{ and } Z\Big[\Big\{\frac{f(k)}{k}\Big\}\Big] = -\int_{z} z^{-1} F(z) dz.$$
 (1+1+4+4=10)

2. Define Laplace transform and find Laplace transform of $t\sin 2t$. If L[f(t)]=F(s), then

prove
$$L\left[\frac{1}{t}f(t)\right] = \int_{s}^{\infty} F(s)ds$$
. (2+3+5=10)

- 3. Define Fourier series and write any two advantages of Fourier series. Find a Fourier series to represent, $f(x) = \pi x$ for $0 < x < 2\pi$. (2+2+6=10)
- 4. State and prove the shifting property and convolution theorem for the Fourier cransform. (3+7=10)
- 5. Define Scalar point function and vector point function. Find grad f, where $f = \log(x^2 + y^2 + z^2)$. If $\vec{r} = xi + yj + zk$ is a vector where $|\vec{r}| = r$ then show that the vector $r^n \vec{r}$ is irrotational. (2+3+5=10)

- 6. Using Stoke's theorem evaluate $\int [(2x-y)dx yz^2dy y^2zdz]$ where c is the circle $x^2 + y^2 = 1$, corresponding to the surface of unit radius. Verify Green's theorem for $\int_{c} [(x^2 + 2xy)dx + (y^2 + x^3y)dy]$ where C is a square with the vertices (0, 0), (1, 0), (1, 1) and (0, 1).
- 7. Define conditional probability. If the events A and B defined on a sample space S of a random experiment are independent, then show that P(A/B)=P(A) and P(B/A)=P(B). State and prove Bayes theorem. (1+2+7=10)
- 8. Prove the Poisson distribution, P(r) is $P(r) = \frac{m'e^{-m}}{r!}$. Find the mean of Poisson distribution. (5+5=10)

M.Sc. ELECTRONICS **First Semester** ENGINEERING MATHEMATICS & STATISTICS (MSE - 101)

Duration: 20 minutes							Marks – 20
(PART A - Objective Type)							
I. (Choose the cor	rect answer	:				1×20=20
1.	The value of (a) 0	Curl(grad <i>f</i>) is (b) 1			(d) Curlf		
2.	The value of g (a) 0	-	(c) Curl(gra	$\mathrm{d}f$	(d) ∇ <i>f</i>		
3.	The value of d (a) 0		(c) div v		(d) Curlv		
4.	The value of σ (a) ∇f	liv(grad f) is (b) $\nabla^2 f$	$(c)^{\nabla^3 f}$	(d) [▽]	4f		
5.	In a scalar point function $\phi(x, y, z)$, every point in space is (a) a scalar (b) a vector (c) scalar or vector (d) none of these						
6.	Grad φ is a vec (a) perpendicu (c) may be per	(b) normal		ch is			
7.	 Curl of a vector point function is a (a) scalar quantity (b) vector quantity (c) some time scalar (d) some time vector 						
8.	The field termed irrotational if (a) $Div\overline{F} = 0$ (b) $Div\overline{F} = 1$ (c) $Curl\overline{F} = 0$ (d) $Curl\overline{F} = 1$						
9.	For any two function (a) $\nabla (f+g)$		If g , $\nabla(fg)$ is $\nabla f + f\nabla g$				
	$(c)^{f\nabla g + g\nabla f}$	(d) no	one of these				

10. Which is of the following is a periodic function?

- (a) $\sin x + x$
- (b) $\sin x + 2x$
- (c) $\sin x + 3x$
- (d) $\sin x$

11. $\int \sin nx dx = ?$

- (a) π
- (b) $\frac{\pi}{2}$ (c) 0
- (d) 1

 $12. \int_{0}^{2\pi} \sin nx \cdot \cos nx dx = ?$

- (a) π
- (b) $\frac{\pi}{2}$ (c) 0
- (d) 1

13.If f(t)=1, then L[f(t)] = ?(a) $\frac{1}{s}$ (b) s (c) $\frac{1}{s-a}$

- (d) 1

14. The value of $L^{-1}(\frac{1}{s-a})$ is

- (a) $\frac{1}{x}$
- (b) s
- (c) e^{at} (d) e^{-at}

15. Fourier sine transform of f(x) is

- (a) $F(s) = \int_{0}^{\infty} f(t) \sin st dt$
- (a) $F(s) = \int_{0}^{\infty} f(t)\sin st dt$ (b) $F(s) = \sqrt{\pi} \int_{0}^{\infty} f(t)\sin st dt$ (c) $F(s) = \sqrt{\frac{\pi}{2}} \int_{0}^{\infty} f(t)\sin st dt$ (d) $F(s) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t)\sin st dt$

16. The value of $P(\varphi)$ is

- (a) 0
- (b) 1
- (c) 0.05
- (d) 0.9

17. If A and B are two mutually exclusive events then

- (a) $\frac{P(A \cup B)}{P(A)} = 0$
- (b) $\frac{P(A \cup B)}{P(A)} = P(A/B)$
- (c) $P(A \cap B) = 0$
- (d) $\frac{P(A \cap B)}{P(A)} = P(A/B)$

18. If A and B are not mutually not exclusive events then which of the following is true

- (a) $\frac{P(A \cup B)}{P(A)} = 0$
- (b) $\frac{P(A \cap B)}{P(A)} = P(A/B)$
- (c) $P(A \cap B) = 0$
- (d) $\frac{P(A \cap B)}{P(B)} = P(A/B)$

19.If A and B are any two independent events then P(AB) is equal to

- (a) P(A)P(B)
- (b) $\frac{P(B)}{P(A)}$
- (c) $\frac{P(A)}{P(B)}$
- (d) P(B)

20.A bag contains 7 red and 8 black balls. Then the probability of drawing a red ball is

- (a) 15
- (b) $\frac{8}{15}$
- (c) $\frac{7}{15}$
- (d) $\frac{15}{8}$
