M.Sc. PHYSICS FOURTH SEMESTER GENERAL THEORY OF RELATIVITY & ASTROPHYSICS MSP – 402

(Use Separate Answer Scripts for Objective & Descriptive)

Duration: 3 hrs. Full Marks: 70

(PART-A: Objective)

Time: 20 min. Marks: 20

Choose the correct answer from the following:

1X20 = 20

Two photons approach each other. Their relative velocity will be
 a. 0
 b. c
 c. c/2
 d. 2c

2. The velocity of a rocket ship is 0.1 c. The rocket ship is contracted to its length by a. 49%
b. 98%
c. 99%
d. 1%

3. Which one of the following expression is correct for surface charge density

a.
$$\sigma' = \frac{\sigma}{\sqrt{1-\beta^2}}$$

b. $\sigma' = \sqrt{1-\beta^2}$
c. $\sigma' = \sigma \sqrt{1-\beta^2}$
d. $\sigma' = \sigma$

4. In four-dimensional manifold, the value of the expression $\delta^{\mu}_{\sigma}\delta^{\sigma}_{\mu}$ is

5. The conjugate metric tensor $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ is

a.
$$\frac{-1}{r^2} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & r^2 \end{pmatrix}$$
b. $\frac{-1}{r^2} \begin{pmatrix} r^2 & 0 & 0 \\ 0 & -r^2 & 0 \\ 0 & 0 & r^2 \end{pmatrix}$
c. $\frac{-1}{r^2} \begin{pmatrix} r^2 & 0 & 0 \\ 0 & -r^2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
d. $\frac{-1}{r^2} \begin{pmatrix} r^2 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & -r^2 \end{pmatrix}$

6. The metric component g_{rr} in the line-element $ds^2 = \alpha^2 dr^2 + \alpha^2 r^2 d\phi^2$ is

a.
$$\alpha^2 r^2$$
 b. r^2 c. α^2/r^2 d. α^2

7. The number of independent components in the Einstein tensor $G^{\alpha\beta}$ is

8. The number of independent components of the Riemann curvature tensor $R_{\alpha\beta\gamma\delta}$ is

	The rank of the mixed tensor $\delta_{\alpha}^{\tau} \delta_{\sigma}^{\mu} A_{\rho \tau}^{\sigma}$ is a. 2	b. 3 d. 5
10.	The kronecker delta is a mixed tensor of rar a. 0 c. 2	
11.	The duration for a star to get back to the before is	
	a. 24 hrs c. 23 hrs 30 mins	b. 24 hrs 4 mins d. 23 hrs 56 mins
12.	The declination (δ) of north celestial pole is a. 0° c. 90°	b 45° d 60°
13.	The mass defect in H to He conversion is co a. 0.0286 amu c. 4.0028 amu	b. 1.0078 amu d. 1 amu
14.	Position of the solar system from the centre a. ~ 1,00,000 LYs c. ~3,000 LYs	of our galaxy is b.~28,000 LYs d.~0 LYs
15.	The points at which ecliptic and equator int a. solstic c. zenith	ersect is called b. equinox d. arctic
16.	If the current time in UTC is 05:30 PM, then a. 10:00 AM c. 11:00 PM	the time in IST is b. 12:15 PM d. 7:30 AM
17.	Which of the following is/are the process of a. gravitational contraction c. nuclear reaction	f production of energy in stars? b. chemical reaction d. all of theses
	A fast rotating neutron star with an intense a	nd large dipolar
	magnetic field is called a a. Pulsar c. Supernova	b. Black hole d. Quasar
19.	The radio telescope array deployed to captu Centre is	re the image of black hole at our Galactic
	a. RATAN-600 c. Event Horizon Telescope	b. 30 meter telescope d. Lovell Telescope
20.	The escape velocity of a typical neutron star a. c (i.e. 3×10^8 m/s) c. 3.5 c	b. 0.66 c d. 9.8 c
	[2]	-
	(-)	

PART-B : Descriptive

Time: 2 hrs. 40 min. Marks: 50

[Answer question no.1 & any four (4) from the rest]

- 1. a. What is meant by a metric tensor? 2+8=10
 - b. By considering the variation of $\int ds$, derive the equation of geodesics in the form

$$\frac{d^2x^{\mu}}{ds^2} + \Gamma^{\mu}_{v\sigma} \frac{dx^{\nu}}{ds} \frac{dx^{\sigma}}{ds} = 0.$$

- 2. a. Define apparent (m) and absolute (M_v) magnitudes of a star, and state how they are related to each other.

 3+5+2
 =10
 - b. If the apparent magnitude of the Sun is -26.73, then calculate its absolute magnitude. (given $1AU = 4.85 \times 10^{-6}$ pc).
 - c. When the time in Greenwich is 9h 40m 20s, it is 15h 47m 33s at USTM. Calculate the longitude of USTM.
- 3. a. Define Christoffels 3-index symbols.

2+4+4

- b. Show that $\Gamma^{\mu}_{\mu\nu} = \partial_{\nu} (\ln \sqrt{-g})$.
- c. If A_{μ} is a tensor, then show that $\partial_{\nu}A_{\mu} \Gamma^{\sigma}_{\mu\nu}A_{\sigma}$ is also a tensor. What is the nature of this tensor?
- 4. a. Explain the three main regions of H-R diagram. 4+6=10
 - b. The Luminosity of our Sun is $L_{\odot} = 3.85 \times 10^{26} W$, and its surface temperature T = 6000 K, find its radius using Stefan's Law.
- 5. a. Show that $G_{\nu;\mu}^{\mu} = 0$, where G_{ν}^{μ} is the Einstein tensor. 6+2+2 =10
 - b. Write the relation between the Einstein tensor and the Ricci tensor.
 - c. What is the cyclic property of the Riemann curvature tensor?
- 6. What do you understand by Hydrostatic Equilibrium of a star? 2+8=10

 From the equation of hydrostatic equilibrium establish the Virial theorem of stars.

7.	a. Find all the Christoffel symbol for the metric tensor of line-element $ds^2 = -A(r)dt^2 + B(r)dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2)$	6+2+2 =10	
	b. Under what condition this line-element is flat space?		
	c. For a Schwarzschild solution writes the function A(r) and B(r).		
8.	a. Calculate the amount of energy released when hydrogen fuses to	2+4+4	

b. Discuss the steps involve in the fusion reactions below: Proton-Proton (P-P) chain reaction, Carbon-Nitrogen-Oxygen (CNO) reaction.

6+2+2