M.Sc. PHYSICS SECOND SEMESTER

ELECTROMAGNETICS & PLASMA PHYSICS MSP-201

(Use Separate Answer Scripts for Objective & Descriptive)

Full Marks: 70

Duration: 3 hrs.

[PART-A: Objective]

Marks: 20

Time: 20 min.

Choose the correct answer from the following:

1X20 = 20

1. The potential for a dipole goes as

a.

c.

$$V \sim \frac{1}{r}$$

$$V \sim \frac{1}{r^3}$$

$$V \sim \frac{1}{r^2}$$
$$V \sim \frac{1}{r^4}$$

2. In 3D, the Laplace's equation reads as (constants have their usual meanings)

a.
$$\frac{\partial V}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial V}{\partial z} = 0$$

c.
$$\frac{\partial^2 V}{\partial x \partial y} + \frac{\partial^2 V}{\partial y \partial z} + \frac{\partial^2 V}{\partial z \partial x} = 0$$

 $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$ $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = -\rho/\epsilon_0$

3. If V has azimuthal symmetry, it depends on

a. ronly

b. θ only

 $c. \phi$ only

d. r and θ only

4. In case of a 2D system, to solve the Laplace's equation, in general, the required number of boundary conditions is

a. 1

b. 2

c. 3

d. 4

5. f(z,t) represents a wave of fixed shape traveling in the z direction at speed v. One of the following forms does not represent a wave. Which one?

a.

$$Ae^{-b(z-vt)^2}$$

b.

 $Ae^{b(bz^2+vt)}$

$$\frac{A}{b(z-vt)^2}$$

 $A\sin[b(z-vt)]$

6. $\tilde{E}(z,t) = \tilde{E}_0 e^{i(kz-\omega t)} \hat{x}$, represents the electric field of an electromagnetic (EM) wave. The polarization of the field is along the

a. x direction

b. y direction

c. z direction

d. Parallel to the x - z plane

7. The allowed gauge transformations for the scalar and vector potentials are

 $A' = A + \nabla \lambda, V' = V - \frac{\partial \lambda}{\partial t}$ $A' = A + \nabla \lambda, V' = V + \frac{\partial \lambda}{\partial t}$

 $A' = A - \nabla \lambda, V' = V + \frac{\partial \lambda}{\partial t}$ $A' = A - \nabla \lambda, V' = V - \frac{\partial \lambda}{\partial t}$

USTM/COE/R-01

8. In the Lorentz gauge, we pick

 $\nabla \cdot A = 0$

d.

d.

 $\nabla \times A = 0$

 $\nabla \cdot A = \mu_0 \epsilon_0 \frac{\partial V}{\partial t}$

9. Fresnel's equation states that the transmitted wave is

a. in phase with the incident one

b. 180° out of phase with the incident one

c. 90° out of phase with the incident one

d. None of these

10. For an electromagnetic (EM) plane wave \hat{n} and \hat{k} are the polarization vector and the direction of wave vector, respectively. They are related as

c.

 $\hat{n} \times \hat{k} = 0$ $\hat{n} \cdot \hat{k} \neq 0$

 $\hat{n}\cdot\hat{k}=0$ $\hat{n} \cdot \hat{k} \neq 0$

11. If λ_D is the Debye length and L is the dimension of plasma, then which of the following represents the criterion of an ionized gas to behave as plasma?

a. $\lambda_D \ll L$

b. $\lambda_D >> L$

c. $\lambda_D = L$

d. $\lambda_D = \sqrt{L}$

12. Drift of a gyrating particle in crossed gravitational and magnetic fields depends on the ratio (the symbols have their usual meanings)

a. mv_{\parallel}^2

b. mv_{\perp}^2

c. m

13. Suppose we have a vacuum chamber with electric field $E = 10 \, \text{Vm}^{-1}$ perpendicular to magnetic field B = 1 mT. The $E \times B$ drift speed for an electron inside the chamber is

a. 103 m/s

b. 104 m/s

c. 1 m/s

d. 10^{-3} m/s

14. The gradient drift for a charge particle of mass m and charge q moving in a system with non-uniform magnetic field \vec{B} is (the symbols have their usual meanings)

a. $\vec{v}_{\nabla B} = \pm \frac{mv_{\parallel}^2 \vec{B} \times \nabla \vec{B}}{2q}$ c. $\vec{v}_{\nabla B} = \pm \frac{mv_{\parallel}^2 \vec{B} \times \nabla \vec{B}}{2qB}$

b. $\vec{v}_{\nabla B} = \frac{1}{2} m v_{\perp}^2 \frac{\vec{B} \times \nabla \vec{B}}{B^3}$ d. $\vec{v}_{\nabla B} = \pm \frac{m v_{\perp}}{2qB} \frac{\vec{B} \times \nabla \vec{B}}{B^2}$

- 15. Plasma oscillations is
 - a. directly proportional to the square root of number density of electrons
 - b. inversely proportional to the square root of mass of electron
 - c. directly proportional to the charge of electron
 - d. directly proportional to the thermal velocity of electrons.

16. For an electron plasma wave, if v_{th} is thermal velocity of electrons, the phase velocity v_{ph} is always greater than or equal to

a.
$$\sqrt{3/2} v_{th}$$

b.
$$\sqrt{1/3} v_{th}$$
 d. v_{th}^2

- 17. The Alfven waves in a compressible, conducting fluid of density ho_m immersed in a magnetic field of strength B_0 is given by (symbols have their usual meanings)

$$v_A = \sqrt{\frac{B_0}{\mu_0 \rho_m}}$$

$$v_A = \frac{B_0}{\sqrt{\mu_0 \rho_m}}$$

$$v_A = \frac{\rho_m}{\sqrt{\mu_0 B_0}}$$

$$v_A = \frac{1}{\mu_0} \sqrt{\frac{B_0^2}{\rho_m^2}}$$

- 18. Rayleigh scattering is strongly dependent upon the
 - a. size of the particle

- b. mass of the particle
- c. charge of the particle
- d. spin of the particle
- 19. The four momentum of a particle at rest having mass m is

$$p^{\mu} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$p^{\mu} = \begin{pmatrix} mc^2 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$p^{\mu} = \begin{pmatrix} mc \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$p^{\mu} = \begin{pmatrix} mc \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$p^{\mu} = \begin{pmatrix} mc^{2} \\ p_{x}c \\ p_{y}c \\ p_{z}c \end{pmatrix}$$

20. Which of the following is a correct description of 4-potential [symbols have their usual meaning]

$$A^{\mu} = \begin{pmatrix} \phi \\ \vec{A} \end{pmatrix}$$

$$A^{\mu} = \begin{pmatrix} \phi/c \\ \vec{A} \end{pmatrix}$$

c.
$$A^{\mu} = \begin{pmatrix} c\phi \\ \vec{A} \end{pmatrix}$$

b.
$$A^{\mu} = \begin{pmatrix} \phi/c \\ \vec{A} \end{pmatrix}$$
d.
$$A^{\mu} = \begin{pmatrix} \phi \\ \vec{A}/c \end{pmatrix}$$

Time: 2 hrs. 40 min.

Marks: 50

[Answer question no.1 & any four (4) from the rest]

1. a. Find $P_3(x)$. The Legendre polynomial $P_1(x)$ is defined by the Rodrigues formula $P_l(x) = \frac{1}{2^l} \left(\frac{d}{dx}\right)^l (x^2 - 1)^l$.

5+5=10

b. Derive an expression for $\vec{E} \times \vec{B}$ drift velocity for the motion of nonrelativistic charged particles in presence of crossed electric (\vec{E}) and magnetic (\vec{B}) fields which are constant in time and uniform in space.

2. a. Write down the (real) electric and magnetic fields for a monochromatic plane wave of amplitude E_0 , frequency ω , and phase angle zero that is traveling in the direction from the origin to the point (1,1,1), with polarization parallel to the x-z direction. Give the explicit Cartesian components of \vec{k} and \hat{n} .

5+4+1 =10

- b. Derive an expression for the Debye shielding length of a typical plasma system.
- c. What do you mean by pinch effect in plasma?

3. a. A sphere of radius R, centered at the origin, carries charge density

2+2+6 =10

$$\rho(r,\theta) = k \frac{R}{r^2} (R - 2r) \sin \theta$$

 $\rho(r,\theta)=k\frac{R}{r^2}(R-2r)\sin\theta,$ Where k is a constant, and r,θ are the usual spherical coordinates. Find the approximate potential for points on the z axis, far from the sphere. [Help: $V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_{n=0}^{\infty} \frac{1}{r^{(n+1)}} \int (r')^n P_n(\cos\theta') \rho\left(\overrightarrow{r'}\right) d\tau'$.]

4+4+2

4. The potentials for a particular charge and current distributions are

 $V = 0, \qquad A = \begin{cases} \frac{\mu_0 k}{4c} (ct - |x|)^2 \hat{\mathbf{z}} & \text{for } |x| < ct \\ 0 & \text{for } |x| > ct \end{cases}$ Where k is a constant and $c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$.

a. Find the electric and magnetic fields. $E = \nabla V - \frac{\partial A}{\partial r}$

b. Show that the computed electric and magnetic fields satisfy the Maxwell's equations.

c. What are the charge and current densities?

[4]

5. a. The potential $V_0(\theta) = k \sin^2\left(\frac{\theta}{2}\right)$ is specified on the surface of a hollow sphere, of radius R. Find the potential inside the sphere. [Hint: $V(r,\theta) = \sum_{l=0}^n \left(A_l + \frac{B_l}{r^{l+1}}\right) P_l(\cos\theta)$, think about the origin, which factor is going to blow up. Try to write down the potential in terms of the Legendre polynomials and then equate.]

5+5=10

- b. The potential $V_0(\theta)$ is again specified on the surface of a sphere of radius R. Find the potential outside the sphere, assuming that no charge is there.
- 6. a. In a magnetic mirror, the trajectory of a charged particle makes an angle θ_0 with the magnetic field line. Show that the mirror ratio R_m is given by

8+2=10

$$R_m$$
 is given by
$$\frac{1}{R_m} = \frac{B_0}{B_m} = \sin^2 \theta_m.$$
Here B_0 is the strength

Here B_0 is the strength of the magnetic field at the centre and B_m is the strength of the magnetic field at the throat of the magnetic mirror system.

b. A plasma with an isotropic velocity distribution is placed in a magnetic mirror trap with mirror ratio $R_m = 2$. Find the value of pitch angle θ_m .

10

7. Show that the dispersion relation for electron plasma wave is given by

10

 $\omega^2 = \omega_p^2 + \frac{3}{2} K_B^2 v_{th}^2$. Hence demonstrate the graphical representation of the variation of plasma frequency ω with wave vector k. (symbols have their usual magnings.)

8. Starting from the electromagnetic field tensor $F^{\mu\nu}$, derive Maxwell's first and third equations.

10

== *** ==