Full Marks: 70

REV-01 BSP/16/21

Duration: 3 hrs.

B.Sc. PHYSICS FOURTH SEMESTER ANALOG SYSTEMS & APPLICATIONS BSP – 403

(Use Separate Answer Scripts for Objective & Descriptive)

(PART-A: Objective)				
Time: 20 min.			Marks: 20	
Choose the correct answer from the following:			1X20=20	
1.	A semiconductor has generallyva a. 2 c. 6	b. 3 d. 4		
2.	An n-type semiconductor is a. Positively charged c. Electrically neutral	b. Negatively charged d. None of the mentioned		
3.]	In the depletion region of a <i>pn</i> junction, there a. Acceptor ions c. Donor ions	b. Electrons and holes d. None of the mentioned		
4. 7	The leakage current of a <i>pn</i> junction is due to a. Minority carriers c. Junction capacitance	b. Majority carriers d. Depletion layer		
5. \	With forward bias to a pn junction, the width a. Decreases c. Remains the same	of the depletion layer b. Increases d. None of the mentioned		
	6. When the graph between current and voltage across a device is a straight line, the device is referred to as a. Linear b. Active c. Non-linear d. Passive			
7. 7	The doping level in a Zener diode is a. The same as c. More than	that of a crystal diode. b. Less than d. None of the mentioned		
8.	A transistor has a. One <i>pn</i> junction c. Three <i>pn</i> junction	b. Two <i>pn</i> junction d. Four <i>pn</i> junction		
	The element that has the biggest size in a tran a. Collector c. Emitter	sistor is b. Base d. Collector-base junction		

10.	In a <i>pnp</i> transistor the current carriers are a. Acceptor ions c. Free electrons	b. Donor ions d. Holes		
11.	The value of β of a transistor is generally a. 1 c. Between 20 and 500	b. Less than 1 d. Above 500		
12.	The most commonly used semiconductor in a. Germanium c. Carbon	the manufacture of a transistor isb. Silicond. None of the mentioned		
13.	Transistor biasing is done to keepa. Proper direct current c. The base current small	in the circuit. b. Proper alternating current d. Collector current small		
14.	The circuit that provides the best stabilization. Base resistor bias c. Voltage divider bias	on of operating point is b. Collector feedback bias d. Emitter bias		
15.	The ideal value of stability factor is a. 100 c. More than 200	b. 200 d. 1		
16.	A single stage transistor amplifier contains_ a. Two transistors c. Three transistors	and associated circuit. b. One transistor d. Four transistors		
17.	7. The purpose of capacitor in a transistor amplifier is to			
	a. Protect the transistorc. Couple or bypass the ac component	b. Cool the transistor d. Providing biasing		
18.	The common-mode gain is a. Very high c. Always unity	b. Very low d. Unpredictable		
19.	A voltage follower			
	a. Has a voltage gain of 1 c. Has no feedback resistor	b. Is non-inverting d. All of the mentioned		
20. An oscillator converts				
	a. a.c. power into d.c. powerc. mechanical power into a.c. power	b. d.c. power into a.c. powerd. None of the mentioned		

PART-B: Descriptive

Time: 2 hrs. 40 min. Marks: 50

[Answer question no.1 & any four (4) from the rest]

- a. Explain the forward biased and reversed biased pn junction with suitable current-voltage characteristics.
 b. What do you mean by an ideal diode? Draw the circuit and
 - characteristics for an ideal diode.
- 2. a. Draw the circuit diagram and explain the operation of a half-wave rectifier. 3+4+3 =10
 - b. Derive the expression for the efficiency of a half-wave rectifier.
 - c. A crystal diode having internal resistance of 20Ω is used for half-wave rectification. If the applied voltage $v = 50 \sin \omega t$ and RL=800 Ω , find (i) rms current, (ii) ac and dc power output, (iii) efficiency
- 3. a. Draw the common emitter (CE) configuration of a transistor and define the current amplification factor.

 2+4+4
 =10
 - b.Establish the relation between α and β of a transistor and find the expression for collector current in CE configuration
 - c. (i) Calculate I_E for which β =50 and I_B =20 μ A.

mode transistor configuration.

- (ii) A transistor is connected in CE mode. Collector supply is 8V and voltage drop across load resistor is 0.5V. If α =0.96 and load resistor is 800 Ω , calculate collector-emitter voltage and base current.
- resistor is 800Ω, calculate collector-emitter voltage and base current.

 4. a. What do you mean by transistor biasing? What is its need?

 2+3+5
 =10
 - c. Figure below shows the biasing with base resistor method. Determine I_C and V_{CE} (neglect V_{BE} and β =50). If R_B in the circuit is changed to $50k\Omega$, find the new operating point.

b.Define stability factorS. Derive the general expression of S for CE

5. a. Draw the h-parameter model of an ideal CE transistor and calculate the froward and reverse parameters.

5+5=10

b. With the help of a neat and labelled diagram, explain the various types of power amplifiers.

6+4=10

6. a. With suitable diagram, explain the principle of positive and negative feedback in amplifiers. Mention the advantages of negative feedback in amplifiers?

- b. An amplifier rated 40W output power is connected to a 10Ω speaker. Calculate: (i) the input power required for full power output if the power gain is 25dB, (ii) the input voltage for rated output if the amplifier voltage gain is 40dB.
- 7. a. With the help of a neat and labelled diagram, explain the operation of a *single ended output* differential amplifier.

6+2+2=10

6+4=10

- **b.** What do you mean by common mode rejection ratio of a differential amplifier.
- c. A differential amplifier has an output of 1V with a differential input of 10mV and an output of 5mV with a common-mode input of 10mV. Find the CMRR in dB.
- a. With suitable diagram, explain the inverting and non-inverting applications of OP-Amp and find the expression of voltage gain in each case.
 - b. Explain the operation of a LC circuit for producing sinusoidal oscillations. How can one produce undamped oscillations from the tank circuit?

== *** = =