M.Sc. CHEMISTRY
 First Semester Inorganic Chemistry -I
 (MSC - 02)

Duration: 3Hrs.
Full Marks: 70

$$
\begin{aligned}
\text { Part-A }(\text { Objective }) & =\mathbf{2 0} \\
\text { Part-B }(\text { Descriptive }) & =50
\end{aligned}
$$

(PART-B: Descriptive)

Duration: $\mathbf{2}$ hrs. 40 mins.
Marks: 50

1. Answer the following questions (any five):
$2 \times 5=10$
(a) Define $L S$ coupling and $j j$ coupling.
(b) Explain two limitations of crystal field theory.
(c) What is meant by quenching of the orbital momentum?
(d) If one $\left[\mathrm{CuL}_{6}\right]^{2+}$ complex ion solution is blue and another is green, which would be expected to have higher value of Δ_{0} ?
(e) What are Wade's rules and give an example for each type of borane?
(f) What is PAN? What are the characteristics of PAN?
(g) What is "BOD" and "COD"?
2. Answer the following questions (any five):
$3 \times 5=15$
(a) What is nephelauxetic effect? Explain nephelauxetic series.
(b) The vanadium atom has the ground configuration $[\mathrm{Ar}] 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{2}$. Given that a d^{3} configuration gives rise to ${ }^{2} \mathrm{P},{ }^{4} \mathrm{P},{ }^{2} \mathrm{D},{ }^{2} \mathrm{~F},{ }^{4} \mathrm{~F},{ }^{2} \mathrm{G}$ and ${ }^{2} \mathrm{H}$ terms, determine the value of L, S and J for the ground state.
(c) What is an Orgel diagram? Construct the Orgel diagram for $\mathrm{Co}^{2+}\left(\mathrm{d}^{7}\right)$ ion in octahedral field.
(d) Classify the following as closo, nido or arachno:
(i) $\mathrm{CB}_{10} \mathrm{H}_{13}{ }^{-}$,
(ii) $\mathrm{NCB}_{10} \mathrm{H}_{11}$,
(iii) $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\left[\mathrm{Os}(\mathrm{CO})_{3}\right]$.
(e) Explain, briefly, the structure of silicates.
(f) Write a short note on green house effect.
(g) What is soil profile? Write a short note on soil profile.
3. Answer the following questions (any five): $5 \times 5=25$
(a) Describe the construction of the ligand group orbitals (LGOs) appropriate for σ-bonding in an octahedral ML_{6} complex?
(b) The aqueous solution of KMnO_{4} is deep purple colored. Characterize the origins of the transitions responsible for the color (with diagram). State two favorable requirements for LMCT transitions.
(c) What is Jahn-Teller effect? How does it affect the stability of the metal complexes? Predict the structure of $\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+}$ keeping in mind the probe Jahn-Teller distortions.
(d) What is spin crossover? What factors cause spin crossover? Elaborate the process of "hysteresis" occurring during spin crossover in an iron complex.
(e) Give an example of a carborane anion isolobal to $\mathrm{C}_{5} \mathrm{H}_{5}{ }^{-}$fragment. Which metallocarborane do you expect to form by this carborane anion? Draw the metallocarborane.
(f) Explain, what are graphene and fullerene. Draw the structures and explain the importance of each.
(g) What is ozone hole? Write an explanatory note on mechanism of ozone depletion.

M.Sc. CHEMISTRY
 First Semester
 Inorganic Chemistry-I

(MSC - 02)
(The figures in the margin indicate full marks for the questions)

Duration: $\mathbf{2 0}$ minutes Marks - $\mathbf{2 0}$

PART A- Objective Type

A. Choose the correct answer:
$1 \times 20=20$
(1) As a ligand F^{-}is
(a) only a σ-donor
(b) only a π-donor
(c) a σ-donor and a π-acceptor
(d) none is true
(2) According to Wade's rule, the number of framework electrons for the nido series equals to -
(a) 2 n
(b) $2 \mathrm{n}+2$
(c) $2 \mathrm{n}+4$
(d) $2 \mathrm{n}+6$
(3) The square planar geometry is particularly common for comple. with metal ions having
(a) d^{6} electrons
(b) d^{7} electrons
(c) d^{8} electrons
(d) d^{f} electrons
(4) The phosphorous oxide $\mathrm{P}_{2} \mathrm{O}_{5}$ is one of the strongest desiccants and reacts with water to form oxoacids. Which one is the correct acid formed?
(a) $\mathrm{H}_{3} \mathrm{PO}_{3}$
(b) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(c) $\mathrm{H}_{3} \mathrm{PO}_{5}$
(d) $\mathrm{H}_{3} \mathrm{PO}_{6}$
(5) The thermal stability of the binary halogen compounds: (A) IF, (B) ClF , (C) ICl , and (D) IBr , follows the order -
(a) (A) $>$ (B) $>$ (C) $>$ (D)
(b) (B) $>$ (C) $>$ (D) $>$ (A)
(c) (C) $>$ (D) $>$ (A) $>$ (B)
(d) (D) $>$ (A) $>$ (B) $>$ (C)
(6) Choose the INCORRECT statement from the following -
(a) The $\mathrm{H}-\mathrm{F}$ bond is stronger than the $\mathrm{H}-\mathrm{Cl}$ bond
(b) The $\mathrm{C}-\mathrm{F}$ bond (in CF_{4}) is stronger than the $\mathrm{C}-\mathrm{Cl}$ bond (in CCl_{4})
(c) The $\mathrm{F}-\mathrm{F}$ bond (in F_{2}) is stronger than the $\mathrm{Cl}-\mathrm{Cl}$ bond (in Cl_{2})
(d) The $\mathrm{Li}-\mathrm{F}$ bond is a stronger than the $\mathrm{Li}-\mathrm{Cl}$ bond
(7) The magnetic moment of the complex $\left[\mathrm{Mn}(\mathrm{NCS})_{6}\right]^{4-}$ is $6.06 \mu_{\mathrm{B}}$. What is its d-electron configuration?
(a) $\mathrm{t}_{2 \mathrm{~g}}{ }^{5} \mathrm{e}_{\mathrm{g}}{ }^{0}$
(b) $\mathrm{t}_{2 \mathrm{~g}}{ }^{4} \mathrm{e}_{\mathrm{g}}{ }^{1}$
(c) $\mathrm{t}_{2 \mathrm{~g}}{ }^{3} \mathrm{eg}^{2}$
(d) $\mathrm{t}_{2 \mathrm{~g}}{ }^{2} \mathrm{eg}^{3}$
(8) The oxidation number of sulphur in dithionite $\left[\mathrm{S}_{2} \mathrm{O}_{4}\right]^{2-}$ and dithionate $\left[\mathrm{S}_{2} \mathrm{O}_{6}\right]^{2-}$ are, respectively,
(a) +3 and +4
(b) +3 and +5
(c) +4 and +5
(d) +4 and +6
(9) The species which does not show temperature-independent paramagnetism -
(a) Low spin Fe^{2+} complexes
(b) Low spin Co^{3+} complexes
(c) MnO_{4}^{-}
(d) $\mathrm{CrO}_{4}{ }^{2-}$
(10) The Δ_{0} of the following complexes: (A) $\left[\mathrm{ReF}_{6}\right]^{2-}$, (B) $\left[\mathrm{TcF}_{6}\right]^{2-}$, and (C) $\left[\mathrm{MnF}_{6}\right]^{2-}$ follows the order -
(a) (C) $>$ (B) $>$ (A)
(b) (C) $>$ (A) $>$ (B)
(c) (B) $>$ (C) $>$ (A)
(d) (A) $>$ (B) $>$ (C)
(11) Complete transfer of electrons from ligand (HOMO) to metal (LUMO) is possible in which pair of complexes:
(a) FeI_{3} and $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(b) HgI_{2} and MnO_{4}^{-}
(c) PbI_{2} and $\left[\mathrm{CrO}_{4}\right]^{2-}$
(d) $\left[\mathrm{PtCl}_{4}\right]^{2-}$ and $\left[\mathrm{AuCl}_{4}\right]^{-}$
(12) The Δ_{0} of the following complexes: (A) $\left[\mathrm{CoF}_{6}\right]^{3-}$, (B) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},(\mathrm{C})\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$, and (D) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ follows the order -
(a) (D) $>$ (C) $>$ (B) $>$ (A)
(b) (A) $>$ (B) $>$ (C) $>$ (D)
(c) (B) $>$ (D) $>$ (C) $>$ (A)
(d) (C) $>$ (D) $>$ (B) $>$ (A)
(13) Pick which one of the following pairs is isolobal to each other -
(a) P_{4} and $(\mathrm{CH})_{4}$
(b) CH_{3} and NH_{3}
(c) CH^{-}and BH
(d) BH and $\mathrm{CH}_{2}{ }^{-}$
(14) The CFSE for the complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is -
(a) +6 Dq
(b) -4 Dq
(c) -14 Dq
(d) -24 Dq
(15) For a Laporte allowed transition, $\Delta l= \pm 1$ and for a spin allowed transition:
(a) $\Delta S=0$
(b) $\Delta S=1$
(c) $\Delta S=-1$
(d) $\Delta S= \pm 1$
(16) O_{3} undergoes photolysis due to UV radiation from the sunlight, according to the reaction:

$$
\mathrm{O}_{3}+\mathrm{h} \nu \rightarrow \mathrm{O}_{2}{ }^{*}+\mathrm{O}^{*}
$$

Here wavelength of the radiation is -
(a) $<315 \mathrm{~nm}$
(b) $<400 \mathrm{~nm}$
(c) $340-400 \mathrm{~nm}$
(d) None
(17) Which of the following is a constituent of photochemical smog?
(a) $\mathrm{N}_{2} \mathrm{O}_{5}$
(b) PAN
(c) $\mathrm{N}_{2} \mathrm{O}_{3}$
(d) None
(18) The bright blue color of aqueous $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and yellow color of PbCrO_{4} are due to
(a) LMCT transition in the first and d-d transition in the second
(b) LMCT transition in both
(c) d-d transition in both
(d) d-d transition in the first and LMCT transition in the second
(19) Which of the following soil water types is not available for plants?
(a) Gravitational water
(b) Capillary water
(c) Hydroscopic water
(d) All
(20) The most abundant element in the earth crust is -
(a) Oxygen
(b) Silicon
(c) Iron
(d) Aluminium

