REV-00 MSC/23/28

2014/01

M.Sc. CHEMISTRY First Semester Inorganic Chemistry -I

(MSC - 02)

Duration: 3Hrs.

Full Marks: 70

12

Part-A (Objective) =20 Part-B (Descriptive)=50

(PART-B: Descriptive)

Duration: 2 hrs. 40 mins.

1. Answer the following questions (any five):

- (a) Define LS coupling and jj coupling.
- (b) Explain two limitations of crystal field theory.
- (c) What is meant by quenching of the orbital momentum?
- (d) If one $[CuL_6]^{2+}$ complex ion solution is blue and another is green, which would be expected to have higher value of Δ_0 ?
- (e) What are Wade's rules and give an example for each type of borane?
- (f) What is PAN? What are the characteristics of PAN?
- (g) What is "BOD" and "COD"?

2. Answer the following questions (any five):

- (a) What is nephelauxetic effect? Explain nephelauxetic series.
- (b) The vanadium atom has the ground configuration [Ar]3d³4s². Given that a d³ configuration gives rise to ²P, ⁴P, ²D, ²F, ⁴F, ²G and ²H terms, determine the value of L, S and J for the ground state.
- (c) What is an Orgel diagram? Construct the Orgel diagram for a $Co^{2+} (d^7)$ ion in octahedral field.
- (d) Classify the following as closo, nido or arachno:
 - (i) $CB_{10}H_{13}$, (ii) $NCB_{10}H_{11}$, (iii) $C_2B_9H_{11}[Os(CO)_3]$.

 $2 \times 5 = 10$

Marks: 50

 $3 \times 5 = 15$

- (e) Explain, briefly, the structure of silicates.
- (f) Write a short note on green house effect.
- (g) What is soil profile? Write a short note on soil profile.

3. Answer the following questions (any five):

$5 \times 5 = 25$

- (a) Describe the construction of the *ligand group orbitals* (LGOs) appropriate for σ-bonding in an octahedral ML₆ complex?
- (b) The aqueous solution of KMnO₄ is deep purple colored. Characterize the origins of the transitions responsible for the color (with diagram). State two favorable requirements for LMCT transitions.
- (c) What is Jahn-Teller effect? How does it affect the stability of the metal complexes? Predict the structure of [Cr(OH₂)₆]²⁺ keeping in mind the proba Jahn-Teller distortions.
- (d) What is spin crossover? What factors cause spin crossover? Elaborate the process of "hysteresis" occurring during spin crossover in an iron complex.
- (e) Give an example of a carborane anion isolobal to C₅H₅⁻ fragment. Which metallocarborane do you expect to form by this carborane anion? Draw the metallocarborane.
- (f) Explain, what are graphene and fullerene. Draw the structures and explain the importance of each.
- (g) What is ozone hole? Write an explanatory note on mechanism of ozone depletion.

REV-00 MSC/23/28

2014/01

M.Sc. CHEMISTRY **First Semester Inorganic Chemistry-I**

(MSC - 02)

(The figures in the margin indicate full marks for the questions)

Duration: 20 minutes

Marks - 20

PART A- Objective Type

A. Choose the correct answer:

 $1 \times 20 = 20$

- (1) As a ligand F^- is
 - (a) only a σ -donor
 - (b) only a π -donor
 - (c) a σ -donor and a π -acceptor
 - (d) none is true
- (2) According to Wade's rule, the number of framework electrons for the nido series equals to -
 - (a) 2n
 - (b) 2n + 2
 - (c) 2n + 4
 - (d) 2n + 6
- (3) The square planar geometry is particularly common for complex. with metal ions having
 - (a) d^{6} electrons
 - (b) d^7 electrons
 - (c) d^8 electrons (d) d^9 electrons
- (4) The phosphorous oxide P_2O_5 is one of the strongest desiccants and reacts with water to form oxoacids. Which one is the correct acid formed?
 - (a) H_3PO_3
 - (b) H₃PO₄
 - (c) H_3PO_5
 - (d) H_3PO_6

- (5) The thermal stability of the binary halogen compounds: (A) IF, (B) CIF, (C) ICl, and (D) IBr, follows the order -
 - (a) (A) > (B) > (C) > (D)
 - (b) (B) > (C) > (D) > (A)
 - (c) (C) > (D) > (A) > (B)
 - (d) (D) > (A) > (B) > (C)
- (6) Choose the INCORRECT statement from the following -
 - (a) The H–F bond is stronger than the H–Cl bond
 - (b) The C–F bond (in CF₄) is stronger than the C–Cl bond (in CCl₄)
 - (c) The F–F bond (in F_2) is stronger than the Cl–Cl bond (in Cl_2)
 - (d) The Li-F bond is a stronger than the Li-Cl bond
- (7) The magnetic moment of the complex $[Mn(NCS)_6]^{4-}$ is 6.06 μ_B . What is its d-electron configuration?
 - (a) $t_{2g}^{5}e_{g}^{0}$ (b) $t_{2g}^{4}e_{g}^{1}$ (c) $t_{2g}^{3}e_{g}^{2}$ (d) $t_{2g}^{2}e_{g}^{3}$
- (8) The oxidation number of sulphur in dithionite $[S_2O_4]^{2-}$ and dithionate $[S_2O_6]^{2-}$ are, respectively,
 - (a) +3 and +4
 - (b) +3 and +5
 - (c) +4 and +5
 - (d) +4 and +6
- (9) The species which does not show temperature-independent paramagnetism -
 - (a) Low spin Fe^{2+} complexes
 - (b) Low spin Co^{3+} complexes
 - (c) MnO_4^-
 - (d) CrO_4^{2-}

(10) The Δ_0 of the following complexes: (A) $[\text{ReF}_6]^{2-}$, (B) $[\text{TcF}_6]^{2-}$, and (C) $[\text{MnF}_6]^{2-}$ follows the order –

(a) (C) > (B) > (A)

- (b) (C) > (A) > (B)
- (c) (B) > (C) > (A)
- (d) (A) > (B) > (C)
- (11) Complete transfer of electrons from ligand (HOMO) to metal (LUMO) is possible in which pair of complexes:
 - (a) FeI₃ and $[Co(H_2O)_6]^{3+}$
 - (b) HgI₂ and MnO₄⁻
 - (c) PbI_2 and $[CrO_4]^{2-}$
 - (d) $[PtCl_4]^{2-}$ and $[AuCl_4]^{-}$
- (12) The Δ_0 of the following complexes: (A) $[CoF_6]^{3-}$, (B) $[Co(en)_3]^{3+}$, (C) $[Co(H_2O)_6]^{3+}$, and (D) $[Co(NH_3)_6]^{3+}$ follows the order
 - (a) (D) > (C) > (B) > (A)
 - (b) (A) > (B) > (C) > (D)
 - (c) (B) > (D) > (C) > (A)
 - (d) (C) > (D) > (B) > (A)

(13) Pick which one of the following pairs is isolobal to each other -

- (a) P_4 and $(CH)_4$
- (b) CH₃ and NH₃
- (c) CH^{-} and BH
- (d) BH and CH_2^-

(14) The CFSE for the complex $[Co(NH_3)_6]^{3+}$ is –

- (a) + 6 Dq
- (b) -4 Dq
- (c) -14 Dq
- (d) -24 Dq

(15) For a Laporte allowed transition, $\Delta l = \pm 1$ and for a spin allowed transition:

- (a) $\Delta S = 0$
- (b) $\Delta S = 1$
- (c) $\Delta S = -1$
- (d) $\Delta S = \pm 1$
- (16) O₃ undergoes photolysis due to UV radiation from the sunlight, according to the reaction: O₃ + hv \rightarrow O₂* + O*

Here wavelength of the radiation is –

- (a) <315 nm
- (b) <400 nm
- (c) 340 400 nm
- (d) None

(17) Which of the following is a constituent of photochemical smog?

- (a) N_2O_5
- (b) PAN
- (c) N_2O_3
- (d) None

(18) The bright blue color of aqueous $[Cr(H_2O)_6]^{2+}$ and yellow color of PbCrO₄ are due to

- (a) LMCT transition in the first and d-d transition in the second
- (b) LMCT transition in both
- (c) d-d transition in both
- (d) d-d transition in the first and LMCT transition in the second
- (19) Which of the following soil water types is not available for plants?
 - (a) Gravitational water
 - (b) Capillary water
 - (c) Hydroscopic water
 - (d) All

(20) The most abundant element in the earth crust is -

- (a) Oxygen
- (b) Silicon
- (c) Iron
- (d) Aluminium