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and a derivation is given in the following Justification. The
equation is often written in terms of the molar volume
Va=V/nas

RT a :
e (1C.5b)
P Ve =DV
The constants a and b are called the van der Waals coeffi-
cients. As can be understood from the following Justification,
a represents the strength of attractive interactions and & that

of the repulsive interactions between the molecules. They

are characteristic of each gas but independent of the tem-

perature (Table 1C.3). Although a and b are not precisely

defined molecular properties, they correlate with physical

properties such as critical temperature, vapour pressure, and
enthalpy of vaporization that reflect the strength of inter-
molecular interactions. Correlations have also been sought
where intermolecular forces might play a role. For example,
the potency of certain general anaesthetics shows a correla-
tion in the sense that a higher activity is observed with lower

values of a (Fig. 1C.5).

Table 1C.3* van der Waals coefficients

b/(102dm*mol™")

a/(atm dm®mol *)

Ar 1337 3.20

Co, 3.610 4.29
He 0.0341 2.38

Xe 4.137 5.16

* More values are given in the Resource section.
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. Figure 1C.5 The correlation of the effectiveness of a gas as an

. anaesthetic and the van der Waals parameter a. (Based on R.J.

’ Wulf and R.M. Featherstone, Anesthesiology 18, 97 (1957).) The
isonarcotic pressure is the pressure required to bring about the
same degree of anaesthesia.

The van der Waals equation of state

The repulsive interactions between molecules are taken into
account by supposing that they cause the molecules to behave
as small but impenetrable spheres. The non-zero volume of the
molecules implies that instead of moving in a volume V they
are restricted to a smaller volume V—nb, where nb is approxi-
mately the total volume taken up by the molecules themselves.
This argument suggests that the perfect gas law p=nRT/V
should be replaced by

_ nRT
“V—nb

when repulsions are significant. To calculate the excluded
volume we note that the closest distance of two hard-sphere
molecules of radius , and volume V, e = 3 ©r%, is 21, 50
the volume excluded is }7(2r)* or 8V, jjcute: The volume
excluded per molecule is one-half this volume, or 4V, ;. 1. SO
bzlﬂ,muic:ulcNt\'

The pressure depends on both the frequency of colli-
sions with the walls and the force of each collision. Both
the frequency of the collisions and their force are reduced
by the attractive interaction, which act with a strength pro-
portional to the molar concentration, n/V, of molecules in
the sample. Therefore, because both the frequency and the
force of the collisions are reduced by the attractive interac-
tions, the pressure is reduced in proportion to the square of
this concentration. If the reduction of pressure is written
as a(n/V)?, where a is a positive constant characteristic of
cach gas, the combined effect of the repulsive and attractive
forces is the van der Waals equation of state as expressed in
eqn 1C.5. RS

In this Justification we have built the van der Waals eq

and the eftects of forces. The equation can be derived in oth CRE ‘

ways, but the present method has the advantage that it shows
how to derive the form of an equation out of general ideas.
derivation also has the advantage of keeping imprecis
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so, we multiply both sides of the equation by (V, ~b)V]2, to
obtain

(V- bW2Z p= RTV:—(V,,—bla

Then, after division by p, collect powers of V,, to obtain

RT a
y e \12,.,. - |V.,=0
Va (b+ p) = (P)

Although closed expressions for the roots of a cubic equa-
tion can be given, they are very complicated. Unless ana-
lytical solutions are essential, it is usually more expedient
to solve such equations with commercial software; graphing
calculators can also be used to help identify the acceptable
root.

Answer According to Table 1C.3, a=3.592 dm®atm mol—
and b=4.267 x 102dm? mol-'. Under the stated conditions,
RT/p=0.410dm?*mol. The coefficients in the equation for V,,
are therefare

b+RT/p=0.453dm> mol ™!
alp=3.61%10"2(dm’ mol~')*
ab/p=1.55 x107*(dm?® mol~')*

Therefore, on writing x=V, /(dm*mol™), the equation to
solve is

x*—0.453x* +(3.61x1072)x—(1.55x107*) =0
The acceptable root is x=0.366 (Fig. 1C.6), which implies that

Vin=0.366 dm*mol™!. For a perfect gas under these conditions,
the molar volume is 0.410 dm* mol-!.

Table 1C.4 Selected equations of state
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Figure 1C.6 The graphical solution of the cubic equatiom
for Vin Example 1C.1.

Self-test 1C.4 Calculate the molar volume of argon at 100
and 100atm on the assumption that it is a van der Waals gas
Answer: 0.298dm? me

(b) The features of the equation

We now examine to what extent the van der Waals equiat
predicts the behaviour of real gases. It is too optimistic
expect a single, simple expression to be the true equatior
state of all substances, and accurate work on gases must nes
to the virial equation, use tabulated values of the coefficie
at various temperatures, and analyse the systems numericz
The advantage of the van der Waals equation, however, is ¢
it is analytical (that is, expressed symbolically) and allows
to draw some general conclusions about real gases. When
equation fails we must use one of the other equations of st
that have been proposed (some are listed in Table 1C.4), i
a new one, or go back to the virial equation.

Critical constants

Equation Reduced form* P V. T, j!
Perfect gas _NRT
‘P
van der Waals _nRT _na e e LIS 3b 8a
P=yab ™ ve 7 T 270 276R
Berthelot _.RT__ rla e 1 (2aR)" 3b 2( 24 )®
P=v=nb~Tv? Sy -1 V2 12\ 3% 3\ 3R
e "RTe--dRT\’fn —Trel\l-ll‘.ﬂ\',) g a 2b a
Dleterict e e e PR iR
nRT |, nB(I)  n*C(T)
Vmal P= __V__.{lq.._vr-.;..-.vz—-r-{....

LB A

i Secti .2(c). Equations of state are sometimes expressed in terms of the molar volume, V,,= V/n.
* Reduced variables are defined in Section 1C.2(c)- B9 P m
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That having been said, we can begin to judge the reliability
of the equation by comparing the isotherms it predicts with
the experimental isotherms in Fig. 1C.2. Some calculated iso-
therms are shown in Fig. 1C.7 and Fig. 1C.8. Apart from the
oscillations below the critical temperature, they do resemble
experimental isotherms quite well. The oscillations, the van der
Waals’ loops, are unrealistic because they suggest that under
some conditions an increase of pressure results in an increase of
volume. Therefore they are replaced by horizontal lines drawn
so the loops define equal areas above and below the lines: this
procedure is called the Maxwell construction (1). The van der
Waals coefficients, such as those in Table 1C.3, are found by fit-
ting the calculated curves to the experimental curves.

Equal
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Figure 1C.7 The surface of possible states allowed by the van
der Waals equation. Compare this surface with that shown in
Fig. 1C.8.
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Figure 1C.8 van der Waals isotherms at several values of T/T..
Compare these curves with those in Fig. 1C.2. The van der
Waals loops are normally replaced by horizontal straight lines.
The critical isotherm is the isotherm for T/7_=1.

The principal features of the van der Waals equation can be
summarized as follows.

1. Perfect gas isotherms are obtained at high temperatures
and large molar volumes.

When the temperature is high, RT may be so large that the first
term in eqn 1C.5b greatly exceeds the second. Furthermore,
if the molar volume is large in the sense V_>b, then the
denominator V,,—b=V,_ . Under these conditions, the equation
reduces to p=RT/V,, the perfect gas equation.

2. Liquids and gases coexist when the attractive and
repulsive effects are in balance.

The van der Waals loops occur when both terms in eqn 1C.5b
have similar magnitudes. The first term arises from the kinetic
energy of the molecules and their repulsive interactions; the
second represents the effect of the attractive interactions.

3. The critical constants are related to the van der Waals
coeflicients.

For T<T, the calculated isotherms oscillate, and each one
passes through a minimum followed by a maximum. These
extrema converge as T— T and coincide at T=T at the criti-
cal point the curve has a flat inflexion (2). From the properties
of curves, we know that an inflexion of this type occurs when
both the first and second derivatives are zero. Hence, we can
find the critical constants by calculating these derivatives and
setting them equal to zero at the critical point:

2 \
s RT 2
AV, = Wby Vg 0
dp __2RT 6a_,
dvZ ~ (V,—b)} V3 51 Gt

The solutions of these two equations (and using
calculate p_ from V, and T) are s

can be tested by noting thamtb.ee .
is predicted to be equal‘ Hade
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for all gases that are described by the van der Waals equation
near the critical point. We see from Table 1C.2 that although

Z.<:=0.375, itis approximately constant (at 0.3) and the dis-
crepancy is reasonably small.

AR EUTUBIEEY Criteria for perfect gas behaviour

For benzene a=18.57 atm dm® mol™2 (1.882 Pa m® mol2) and
b=0.1193dm?*mol ! (1.193 x 10~* m* mol™'); its normal boil-
ing point is 353 K. Treated as a perfect gas at T=400K and
p=1.0atm, benzene vapour has a molar volume of V, ,=RT/p=
33dmmol ™, so the criterion V> b for perfect gas behaviour
is satisfied. It follows that a/ V.2 =0.017atm, which is 1.7 per
cent of 1.0 atm. Therefore, we can expect benzene vapour to

deviate only slightly from perfect gas behaviour at this tem-
perature and pressure.

Self-test 1C.5 Can argon gas be treated as a perfect gas at 400K
and 3.0 atm?

Answer: Yes

(© The principle of corresponding states

An important general technique in science for comparing the
properties of objects is to choose a related fundamental prop-
erty of the same kind and to set up a relative scale on that basis.
We have seen that the critical constants are characteristic prop-
erties of gases, so it may be that a scale can be set up by using
them as yardsticks. We therefore introduce the dimensionless
reduced variables of a gas by dividing the actual variable by the
corresponding critical constant:

Vv T
ViR po= P T = _.- Definition Reduced variables (1C.8)
W T |

<

If the reduced pressure of a gas is given, we can easily calcu-
late its actual pressure by using p=p.p., and likewise for the
volume and temperature. van der Waals, who first tried this
procedure, hoped that gases confined to the same reduced vol-
ume, V, at the same reduced temperature, T;, would exert the
same reduced pressure, p,. The hope was largely fulfilled (Fig.
1C.9). The illustration shows the dependence of the compres-
sion factor on the reduced pressure for a variety of gases at
various reduced temperatures. The success of the procedure
is strikingly clear: compare this graph with Fig. 1C.3, where
similar data are plotted without using reduced variables. The
observation that real gases at the same reduced volume and
reduced temperature exert the same reduced pressure is called
the principle of corresponding states. The principle is only. an
approximation. It works l_)est for gases composed of spherical
molecules; it fails, sometimes badly, when the molecules are

non-spherical or polar.
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Figure 1C.9 The compression factors of four of the gases
shown in Fig. 1C.3 plotted using reduced variables. The cur
are labelled with the reduced temperature 7,=T/T.. Theuse:
reduced variables organizes the data on to single curves.

\Brief i"‘jst'atié’“ U Corresponding states

The critical constants of argon and carbon dioxide are gives
Table 1C.2. Suppose argon is at 23 atm and 200K, its redns
pressure and temperature are then

23atm T 200K

T T

For carbon dioxide to be in a corresponding state, its press
and temperature would need to be
p=0.48x(72.9atm)=35atm T=1.33%304.2K=4051

Self-test 1C.6 What would be the corresponding stake
ammonia?

Answer: 53atm, 5.

The van der Waals equation sheds some light on the pr

ple. First, we express eqn 1C.5b in terms of the reduced
ables, which gives

LRI
prpc_vr‘/(__b vvzvc'.‘

Then we express the critical constants in terms of a and
using eqn 1C.8:

ap. _8aT,/27b  a _
270> ~ 3bpV,—b  9bV?

which can be reorganized into

STy g |
Pr—3vr__1 ‘,;2




This equation has the same form as the original, but the coeffi-
cients a and b, which differ from gas to gas, have disappeared. It
follows that if the isotherms are plotted in terms of the reduced
variables (as we did in fact in Fig. 1C.8 without drawing atten-
tion to the fact), then the same curves are obtained whatever
the gas. This is precisely the content of the principle of corre-
sponding states, so the van der Waals equation is compatible
with it.

Looking for too much significance in this apparent triumph
is mistaken, because other equations of state also accommodate

the principle (like those }g
two parameters playing the ro
tion can always be manipulate:
vation that real gases obey the pri
to saying that the effects of ’

The importance of the principle is
retical interpretation but the wa

Checklist of concepts

O 1. The extent of deviations from perfect behaviour is sum-
marized by introducing the compression factor.

The virial equation is an empirical extension of the per-
fect gas equation that summarizes the behaviour of real
gases over a range of conditions.

The isotherms of a real gas introduce the concepts of
vapour pressure and critical behaviour.

A gas can be liquefied by pressure alone only if its tem-
perature is at or below its critical temperature.
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Checklist of equations
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Property Equation

Compression factor Z =V Ve
Virial equation of state

van der Waals equation of state p=nRT/(V-nb)-a(n/V)?

Reduced variables X, =X/X,

PV =RT(1+B/Vy +CIV2 1)
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