46 1 The properties of gases

Attractive forces are ineffective when the molecules are far
apart (well to the right in Fig. 1C.1). Intermolecular forces are
also important when the temperature is so low that the mol-
ecules travel with such low mean speeds that they can be cap-
tured by one another.

The consequences of these interactions are shown by shapes
of experimental isotherms (Fig. 1C.2). At low pressures, when
the sample occupies a large volume, the molecules are so far
apart for most of the time that the intermolecular forces play
no significant role, and the gas behaves virtually perfectly. At
moderate pressures, when the average separation of the mol-
ecules is only a few molecular diameters, the attractive forces
dominate the repulsive forces. In this case, the gas can be
expected to be more compressible than a perfect gas because
the forces help to draw the molecules together. At high pres-
sures, when the average separation of the molecules is small,
the repulsive forces dominate and the gas can be expected to
be less compressible because now the forces help to drive the
molecules apart.

Consider what happens when we compress (reduce the vol-
ume of) a sample of gas initially in the state marked A in Fig.
1C.2 at constant temperature by pushing in a piston. Near A,
the pressure of the gas rises in approximate agreement with
Boyle’s law. Serious deviations from that law begin to appear
when the volume has been reduced to B.

At C (which corresponds to about 60 atm for carbon
dioxide), all similarity to perfect behaviour is lost, for sud-
denly the piston slides in without any further rise in pres-
sure: this stage is represented by the horizontal line CDE.

Examination of the contents of the vessel shows that just to the
left of C a liquid appears, and there are two phases separated
by a sharply defined surface. As the volume is decreased from
C through D to E, the amount of liquid increases. There is no
additional resistance to the piston because the gas can respond
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Figure 1C.2 Experimental isotherms of carbon dioxide at
several temperatures. The ‘critical isotherm’, the isotherm at the

critical temperature, is at 31.1 °C.

by condensing. The pressure corresponding to the line C=
when both liquid and vapour are present in equilibrius==
called the vapour pressure of the liquid at the temperatuf=
the experiment.

At E, the sample is entirely liquid and the piston rests 0%=
surface. Any further reduction of volume requires the exer=
of considerable pressure, as is indicated by the sharply rt=
line to the left of E. Even a small reduction of volume from =
F requires a great increase in pressure.

(@) The compression factor

As a first step in making these observations quantitative
introduce the compression factor, Z, the ratio of the measu®
molar volume of a gas, V, = V/n, to the molar volume of a ¥

fect gas, V. , at the same pressure and temperature:

/’ =
= VIE Definition ~ Compression factor i(1-
m

Because the molar volume of a perfect gas is equal to RT/p:
equivalent expression is 7 = RT/pV; , which we can write: 2

pV. =RTZ (1€

Because for a perfect gas Z=1 under all conditions, deviat
of Z from 1 is a measure of departure from perfect behaviou
Some experimental values of Z are plotted in Fig. 1C.3-
very low pressures, all the gases shown have Z=1 and belh
nearly perfectly. At high pressures, all the gases have Z>1,. ¢
nifying that they have a larger molar volume than a perfect:g
Repulsive forces are now dominant. At intermediate pressut
most gases have Z< 1, indicating that the attractive forces
reducing the molar volume relative to that of a perfect gas.
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Figure 1C.3 The variation of the compression factor, Z, with
pressure for several gases at 0 °C. A perfect gas has Z=1 atall
pressures. Notice that, although the curves approach 1 asp—
they do so with different slopes.
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Brief illustration 1C.T A& yi¥S compression factor

The molar volume of a perfect gas at 500K and 100 bar is
V2 =0.416dm* mol~". The molar volume of carbon dioxide
under the same conditions is V,,=0.366 dm?* mol-'. It follows
that at 500K

0.366dm?* mol™!

~0.416dm’ mol-! =0:580

The fact that Z<1 indicates that attractive forces dominate
repulsive forces under these conditions.

Self-test 1C.1 The mean molar volume of air at 60 bar and
400K is 0.9474 dm?*mol-'. Are attractions or repulsions
dominant?

Answer: Repulsions

(b) Virial coefficients

Now we relate Z to the experimental isotherms in Fig. 1C.2. At
large molar volumes and high temperatures the real-gas iso-
therms do not differ greatly from perfect-gas isotherms. The
small differences suggest that the perfect gas law pV,,=RT is in
fact the first term in an expression of the form

pV, =RT(1+B p+C’'p*+---) (1C.3a)

This expression is an example of a common procedure in physi-
cal chemistry, in which a simple law that is known to be a good
first approximation (in this case pV,,=RT) is treated as the first
term in a series in powers of a variable (in this case p). A more
convenient expansion for many applications is

PV =RT( + §~+ ‘f; S J Virial equation of state  (1C.3b)
These two expressions are two versions of the virial equation of
state.! By comparing the expression with eqn 1C.2 we see that
the term in parentheses in eqn 1C.3b is just the compression
factor, Z.

The coefficients B, C, ..., which depend on the temperature,
are the second, third, ... virial coefhicients (Table 1C.1); the
first virial coefficient is 1. The third virial coefficient, C, is usu-
ally less important than the second coefficient, B, in the sense
that at typical molar volumes C/V2 <<B/V,, . The values of the
virial coefficients of a gas are determined from measurements
of its compression factor.

! The name comes from the Latin word for force. The coefficients are
sometimes denoted By, B, ....

Table 1C.1* Second virial coefficients, B/(cm*mol~')

Ar -21.7 11 9‘; ;

co, -149.7 Sy Se
N, -105 27 .ﬁ.
Xe -1537 -196

* More values are given in the Resource section.
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Figure 1C.4 The compression factor, Z, approaches 1 at low
pressures, but does so with different slopes. For a perfect gas,
the slope is zero, but real gases may have either positive or
negative slopes, and the slope may vary with temperature. At
the Boyle temperature, the slope is zero and the gas behaves
perfectly over a wider range of conditions than at other
temperatures.

value), as we can see in Fig. 1C.4. Because several physical
properties of gases depend on derivatives, the properties of real
gases do not always coincide with the perfect gas values at low
pressures. By a similar argument,

am—‘:’:s — Bas “m —> 00 (1C.4b)

Because the virial coefficients depend on the temperature,
there may be a temperature at which Z— 1 with zero slope at
low pressure or high molar volume (as in Fig. 1C.4). At this
temperature, which is called the Boyle temperature, Ty, the
properties of the real gas do coincide with those of a perfect gas
as p— 0. According to eqn 1C.4b, Z has zero slope as p—0 if
B=0, so we can conclude that B=0 at the Boyle temperature. It
then follows from eqn 1C.3 that pV, = RT}; over a more extended
range of pressures than at other temperatures because the first
term after 1 (that is, B/ V,)) in the virial equation is zero and C/ V2
and higher terms are negligibly small. For helium Ty=22.64K;

for air T;;=346.8 K; more values are given in Table 1C.2.

(© Critical constants

The isotherm at the temperature T, (304.19K, or 31.04 °C for
CO,) plays a special role in the theory of the states of matter.

Table 1C.2* Critical constants of gases

Ar 80 753 150.7 0.292 411.5
CO, 72.9 94.0 304.2 0.274 714.8
He 226 57.8 52 0.305 22.64
0O, 50.14 78.0 & 154.8 0.308 405.9

* More values are given in the Resource section.

An isotherm slightly below T. behaves as we have alre
described: at a certain pressure, a liquid condenses from =
gas and is distinguishable from it by the presence ofa viis#
surface. If, however, the compression takes place at T, its
then a surface separating two phases does not appear and*
volumes at each end of the horizontal part of the isothé
have merged to a single point, the critical point of the £
The temperature, pressure, and molar volume at the crit’
point are called the critical temperature, T, critical p®
sure, p., and critical molar volume, V, of the substar
Collectively, p., V., and T, are the critical constants of a s-
stance (Table 1C.2).

At and above T, the sample has a single phase which oG
pies the entire volume of the container. Such a phase iis,
definition, a gas. Hence, the liquid phase of a substance &
not form above the critical temperature. The single phase |
fills the entire volume when T> T, may be much denser that
normally consider typical of gases, and the name supercrit
fluid is preferred.

CLEIITBIENIIRICEY The critical temperature

‘The critical temperature of oxygen signifies that it is impe
sible to produce liquid oxygen by compression alone ifits tes
perature is greater than 155 K. To liquefy oxygen—to obtair
fluid phase that does not occupy the entire volume—the tes
perature must first be lowered to below 155 K, and then the: g
compressed isothermally.

Self-test 1C.3 Under which conditions can liquid nitrogen
formed by the application of pressure?
Answer: At T<12

1c2 The van der Waals equation

We can draw conclusions from the virial equations of
only by inserting specific values of the coefficients. It is10
useful to have a broader, if less precise, view of all &2
Therefore, we introduce the approximate equation of £
suggested by J.D. van der Waals in 1873. This equation i
excellent example of an expression that can be obtainet
thinking scientifically about a mathematically compli€
but physically simple problem; that is, it is a good examp!
‘model building’

(@) Formulation of the equation
The van der Waals equation is

nRT n?

e Van der Waal ti 10
P Venb aV2 an der Waals equation of state  (




1C Real gases 49

and a derivation is given in the following Justification. The
equation is often written in terms of the molar volume
Va.=V/inas

SeRG
PEV. b V2

m

(1C.5b)

The constants @ and b are called the van der Waals coeffi-
cients. As can be understood from the following Justification,
a represents the strength of attractive interactions and b that
of the repulsive interactions between the molecules. They
are characteristic of each gas but independent of the tem-
perature (Table 1C.3). Although a and b are not precisely
defined molecular properties, they correlate with physical
properties such as critical temperature, vapour pressure, and
enthalpy of vaporization that reflect the strength of inter-
molecular interactions. Correlations have also been sought
where intermolecular forces might play a role. For example,
the potency of certain general anaesthetics shows a correla-
tion in the sense that a higher activity is observed with lower
values of a (Fig. 1C.5).

Table 1C.3* van der Waals coefficients

a/(alm dm“ mol )

b/(lo -dm3 mol ')

Ar 1.337 3.20

(@{0); 3.610 4.29
He 0.0341 2.38

Xe 4.137 5.16

* More values are given in the Resource section.
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. Figure 1C.5 The correlation of the effectiveness of a gas as an
. anaesthetic and the van der Waals parameter a. (Based on R.J.

Wulf and R.M. Featherstone, Anesthesiology 18, 97 (1957).) The
isonarcotic pressure is the pressure required to bring about the
same degree of anaesthesia.

The van der Waals equation of state

The repulsive interactions between molecules are taken into
account by supposing that they cause the molecules to behave
as small but impenetrable spheres. The non-zero volume of the
molecules implies that instead of moving in a volume V they
are restricted to a smaller volume V—nb, where nb is approxi-
mately the total volume taken up by the molecules themselves.
This argument suggests that the perfect gas law p=nRT/V
should be replaced by

_ nRT
" V-nb

when repulsions are significant. To calculate the excluded
volume we note that the closest distance of two hard-sphere
molecules of radius r, and volume Vj.cue =3 7%, is 21, SO
the volume excluded is {m(2r)* or 8V, .cue- The volume
excluded per molecule is one-half this volume, or 4V, 1.cuter SO
b=4vmolcculcNA'

The pressure depends on both the frequency of colli-
sions with the walls and the force of each collision. Both
the frequency of the collisions and their force are reduced
by the attractive interaction, which act with a strength pro-
portional to the molar concentration, n/V, of molecules in
the sample. Therefore, because both the frequency and the
force of the collisions are reduced by the attractive interac-
tions, the pressure is reduced in proportion to the square of
this concentration. If the reduction of pressure is written
as a(n/V)?, where a is a positive constant characteristic of
each gas, the combined effect of the repulsive and attractive
forces is the van der Waals equation of state as expressed ni
eqn 1C.5. R

In this Justification we have built the van der Waals equ
tion using vague arguments about the volumes of mole e
and the effects of forces. The equation can be derived in

derivation also has the advantage of keeping impre
significance of the coefficients a and b: they are m
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Figure 1C.4 The compression factor, Z, approaches 1 at low
pressures, but does so with different slopes. For a perfect gas,
the slope is zero, but real gases may have either positive or
negative slopes, and the slope may vary with temperature. At
the Boyle temperature, the slope is zero and the gas behaves
perfectly over a wider range of conditions than at other
temperatures.

value), as we can see in Fig. 1C.4. Because several physical
properties of gases depend on derivatives, the properties of real
gases do not always coincide with the perfect gas values at low
pressures. By a similar argument,

dz

(]_O/T/m) —BasV,, —oe (1C.4b)

Because the virial coefficients depend on the temperature,
there may be a temperature at which Z— 1 with zero slope at
low pressure or high molar volume (as in Fig. 1C.4). At this
temperature, which is called the Boyle temperature, T}, the
properties of the real gas do coincide with those of a perfect gas

as p—0. According to eqn 1C.4b, Z has zero slope as p—0 if

B=0, so we can conclude that B=0 at the Boyle temperature. It
then follows from eqn 1C.3 that pV, = RT}, over a more extended
range of pressures than at other temperatures because the first
termafter 1 (that is, B/V,) in the virial equation is zero and C/ V2
and higher terms are negligibly small. For helium Tj;=22.64K;
for air Ty;=346.8 K; more values are given in Table 1C.2.

(© Critical constants

The isotherm at the temperature T, (304.19 K, or 31.04 °C for
CO,) plays a special role in the theory of the states of matter.

Table 1C.2* Critical constants of gases

Ar 48.0 75.3 150.7

0.292 411.5
Co, 72.9 94.0 304.2 0.274 714.8
He 2.26 57.8 52 0.305 22.64
0, 50.14 78.0 154.8 0.308 405.9

* More values are given in the Resource section.

An isotherm slightly below T, behaves as we have alré
described: at a certain pressure, a liquid condenses from?
gas and is distinguishable from it by the presence of a vis=
surface. If, however, the compression takes place at T, iit=
then a surface separating two phases does not appear anid
volumes at each end of the horizontal part of the isotlh=
have merged to a single point, the critical point of the £
The temperature, pressure, and molar volume at the crits
point are called the critical temperature, T, critical p~
sure, p., and critical molar volume, V,, of the substa®
Collectively, p., V_, and T_ are the critical constants ofa &
stance (Table 1C.2).

At and above T, the sample has a single phase which O
pies the entire volume of the container. Such a phase i
definition, a gas. Hence, the liquid phase of a substance &
not form above the critical temperature. The single phase :
fills the entire volume when T> T, may be much denser that
normally consider typical of gases, and the name supercrif?
fluid is preferred.

GEMIEBERCIIIEEY The critical temperature

The critical temperature of oxygen signifies that it is imp&
sible to produce liquid oxygen by compression alone if its te
perature is greater than 155K. To liquefy oxygen—to obtai i
fluid phase that does not occupy the entire volume—the te:m
perature must first be lowered to below 155 K, and then the g:
compressed isothermally.

Self-test 1C.3 Under which conditions can liquid nitrogen E
formed by the application of pressure?
Answer: At T<126

1c.2 The van der Waals equation

We can draw conclusions from the virial equations of st
only by inserting specific values of the coefficients. It is olf
useful to have a broader, if less precise, view of all gas
Therefore, we introduce the approximate equation of sit
suggested by J.D. van der Waals in 1873. This equation is
excellent example of an expression that can be obtained|
thinking scientifically about a mathematically complicas
but physically simple problem; that is, it is a good examplg
‘model building’

(@ Formulation of the equation
The van der Waals equation is

nRT n?

D= AUy Van der Waals equation of state (l




