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Figure 1B.1 The pressure of a gas arises from the impact
of its molecules on the walls. In an elastic collision of a
molecule with a wall perpendicular to the x-axis, the
x-component of velocity is reversed but the y- and
z-components are unchanged.

by the number of molecules that reach the wall during the
interval.

Because a molecule with velocity component v, can travel

a distance v, At along the x-axis in an interval At, all the mol-
ecules within a distance v, At of the wall will strike it if they
are travelling towards it (Fig. 1B.2). It follows that if the wall
has area A, then all the particles in a volume Ax v At will
reach the wall (if they are travelling towards it). The number
density of particles is nN,/V, where n is the total amount of
molecules in the container of volume V and N, is Avogadro’s
constant, so the number of molecules in the volume Av At is
(nN,/V) X Av, At.

At any instant, half the particles are moving to the right
and half are moving to the left. Therefore, the average num-
ber of collisions with the wall during the interval Af is
nN, Av At/V . The total momentum change in that interval
is the product of this number and the change 2muv.:

N, Av At
Momentum change = S "2-—‘;’"-- -X2mv,
M
——
_nmN,y AviAt _ nMAviAt
1% T

Area, A

Volume = |, AtjA

Figure 1B.2 A molecule will reach the wall on the right
within an interval At if it is within a distance ¢, At of the wall
and travelling to the right.

Next, to find the force, we calculate the rate ofchange o
momentum, which is this change of momentum divided b3
the interval Af during which it occurs:

- nMAv?
Rate of change of momentum=-————

|4
This rate of change of momentum is equal to the force (b3
Newton’s second law of motion). It follows that the pressuré
the force divided by the area, is

nMuv?
Pressure=———>"
Vv

Not all the molecules travel with the same velocity, so the
detected pressure, p, is the average (denoted (...)) of the quan-
tity just calculated:

_ nM({vi)
=

This expression already resembles the perfect gas equation ot
state.

To write an expression for the pressure in terms of the root
mean-square speed, v, , we begin by writing the speed of 2
single molecule, v, as v* =v? +v? +v?. Because the root-mean-
square speed is defined as v, =(v%"?, it follows that

Vims =02 ) =(U3) +(v})+(v])

However, because the molecules are moving randomly, all thres

averages are the same. It follows that v?

rms
1B.1 follows immediately by substituting (v? )= (v
p=nM{2)/V.

=(3v?). Equatior
2 L) inite

rms

Equation 1B.1 is one of the key results of the kinetic mod
We see that, if the root-mean-square speed of the molecul
depends only on the temperature, then at constant temperatu

pV =constant
which is the content of Boyle's law. Moreover, for eqn 1B.1 ton
the equation of state of a perfect gas, its right-hand side must.

equal to nRT. It follows that the root-mean-square speed of t
molecules in a gas at a temperature T must be

£ 3VR'171 12
rms M

CHERIVEIENCORERY Molecular speeds

For N, molecules at 25°C, we use M=28.02 g mol™, then

Perfectgas RMS speed (1B

. e

3%(8.3145] K- mol~)x(298K) | :
Uiy = =515ms™!
iyl 0.02802 kg mol™!

S
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Shortly we shall encounter the mean speed, v,,..,,» and the
most probable speed v,,,; they are, respectively,

8 2
Umean =(-3—1_t) Upme =0.921...X(515ms™")=475ms™

12
ump=(~) Vems =0.816...%(515ms™)=420ms™"

Self-test 1B.1 Evaluate the root-mean-square speed of H, mol-
ecules at 25°C.
Answer: 1.92kms™!

b) The Maxwell-Boltzmann distribution of
speeds

Equation 1B.2 is an expression for the mean square speed of
molecules. However, in an actual gas the speeds of individual
molecules span a wide range, and the collisions in the gas con-
tinually redistribute the speeds among the molecules. Before a
collision, a molecule may be travelling rapidly, but after a col-
lision it may be accelerated to a very high speed, only to be
slowed again by the next collision. The fraction of molecules
that have speeds in the range v to v+dv is proportional to the
width of the range, and is written f{v)dv, where flv) is called
the distribution of speeds. Note that, in common with other
distribution functions, f(v) acquires physical significance only
after it is multiplied by the range of speeds of interest. In the fol-
lowing Justification we show that the fraction of molecules that
have a speed in the range v to v+dv is f(v)dv, where

Maxwell-~
Boltzmann
distribution

M 3/2
fv)= 4n( S ) yiegllEs gi;re“ (1B.4)

The function f(v) is called the Maxwell-Boltzmann distribu-
tion of speeds.

BN RE®PY The Maxwell-Boltzmann distribution

of speeds

The Boltzmann distribution (Foundations B) implies that the
fraction of molecules with velocity components v,, v,, and
v, is proportional to an exponential function of their kinetic
energy: f(v)=Ke ¥k, where K is a constant of proportionality.
The Kinetic energy is

=Lo? +Lm? +Lmy?
E=Smug+ymyy+omy;

Therefore, we can use the relation a*»*2=g*@/a* to write

f ()= Ke_(myg Ay +mvg W2KT _ Ke~mvii2kT e—mu} 12KT o=mu3 12kT

The distribution factorizes into three terms, and we can

write flv)=f(v,) f(v),) flv)and K=K.K K, with
f(vx)=Kxe-mvil2kT
and likewise for the other two axes.
To determine the constant K,, we note that a molecule

must have a velocity component somewhere in the range
—oc0< Y, < oo, SO

J:f(u,‘)dvx =1

Substitution of the expression for f(v,) then gives

5 Integral G.1 12
1= Kt.[ e—nll’ledeux ; Kx ( 21::1' )

Therefore, K, =(m/2nkT)"? and at this stage we can write

1/2
fw) [2thT) (S (1B.5)

The probability that a molecule has a velocity in the range , to
v t+dv, v, tov,+dv, v to v, +duv., is therefore

n
fw)fw,)f(v.)= (2 kT) e~MY2KT g=mu KT o =mu?2KT o0

dv,dv dv,

32
| ettt — 0 [2KT
—(th kTJ e dv,dv,dv,

where v? =v2 +v2 +v2.

To evaluate the probability that the molecules have a speed
in the range v to v+ dv regardless of direction we think of the
three velocity components as defining three coordinates in
‘velocity space’, with the same properties as ordinary space
except that the coordinates are labelled (v,,v,,v.) instead :

of its surface area, 41tr?, and its thickness dr, and
4mr2dr. Similarly, the analogous volume in velo
the volume of a shell of radius v and thick
4nv2dv (Fig. 1B.3). Now, because f(u,)ﬂvlgf( :
blue in the last equatxon, depends o'
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Figure 1B.3 To evaluate the probability that a molecule SpeRc Y

has a speed in the range v to v+ dv, we evaluate the
total probability that the molecule will have a speed
thatis anywhere on the surface of a sphere of radius

Figure 1B.4 The distribution of molecular speeds with
temperature and molar mass. Note that the most probable

b } it : speed (corresponding to the peak of the distribution) increas
v=>2 +v3 +y2)2 by summing the probabilities that it

ve 5 = with temperature and with decreasing molar mass, and
Sl volume element dv,dv,dv; ata distance v from the simultaneously the distribution becomes broader.
origin.

» A factor v? (the term before the e Itiplies the
shell of radius v and thickness dv. If this probability is written : B R panpeny

exponential. This factor goes to zero as v goes to
f(v)dv, it follows that F ) & ‘ 8
zero, so the fraction of molecules with very low
oL : speeds will also be very small whatever their mass.
f(v')dv=4nv2du SRR, c—nll'II’ZL'I
21tkT » 'The remaining factors (the term in parentheses in

eqn 1B.4 and the 47) simply ensure that, when we
sum the fractions over the entire range ofspeeds

m V2 from zero to infinity, then we get 1.
— s 2a-mi? 2kT
f(v)ﬂén( 21tkT) vie

and f(v) itself, after minor rearrangement, is

The Maxwell distribution has been verified experimenta
R SR KM/ R fhiis expression is eqn 1B.4. For exa.mple, l‘ﬂOleCL-lh\l' speeds can l.)e 1?1ea5L.1red directl.y w
a velocity selector (Fig. 1B.5). The spinning discs have slits t]
permit the passage of only those molecules moving throu
them at the appropriate speed, and the number of molecu
can be determined by collecting them at a detector.

The important features of the Maxwell-Boltzmann distribu-
tion are as follows (and are shown pictorially in Fig. 1B.4):

+ Equation 1B.4 includes a decaying exponential (© Mean values
function (more specifically, a Gaussian function).
T6 ek e [TV TIAR 1t tha fraction ofmolecules Once we have the Maxwell-Boltzmann distribution, we ¢

: . calculate the / va

with very high speeds will be very small because TR I;Lea:;a\t:h:;()f at;ygow.er of the stpeed ?Y ie 1
-yd - < o -

¢* becomes very small when x is large. & PProp Seral. rornstance, tojcialy

* 'The factor M/2RT multiplying 2 in the exponent is
large when the molar mass, M, is large, so the
exponential factor goes most rapidly towards zero
when M is large. That is, heavy molecules are
unlikely to be found with very high speeds.

" » The opposite is true when the temperature, T, is
high: then the factor M/2RT in the exponent is
small, so the exponential factor falls towards zero
relatively slowly as v increases. In other words, a

greater fraction of the molecules can be ;xpecttled to Figu:ie 1B-f;, A velocity selector. Onl)r/I molehc:l‘es travelling a;‘
i i thanatlow speeds within a narrow range pass throu € succession
:‘;:;;:‘:f:‘ asialLTA sﬁts as they rotate into posi?io:. 5 2
ures.

Physical interpretation




Distribution function, flv)

- Speed, v
1 2

Figure 1B.6 To calculate the probability that a molecule will
have a speed in the range v, to v, we integrate the distribution
between those two limits; the integral is equal to the area of
the curve between the limits, as shown shaded here.

\
fraction of molecules in the range v, to v, we evaluate the
integral:

F(vnvz)=_[r:f(u)du (1B.6)

This integral is the area under the graph of fas a function of »
and, except in special cases, has to be evaluated numerically by
using mathematical software (Fig. 1B.6). To evaluate the aver-
age value of v" we calculate

(1/")=va"f(u)dv 18.2)
0

In particular, integration with n=2 results in eqn 1B.3 for the
mean square speed (%) of the molecules at a temperature T.
We can conclude that the root-mean-square speed of the mol-
ecules of a gas is proportional to the square root of the tempera-
ture and inversely proportional to the square root of the molar
mass. That is, the higher the temperature, the higher the root-
mean-square speed of the molecules, and, at a given tempera-
ture, heavy molecules travel more slowly than light molecules.
Sound waves are pressure waves, and for them to propagate the
molecules of the gas must move to form regions of high and low
pressure. Therefore, we should expect the root-mean-square
speeds of molecules to be comparable to the speed of sound in
air (340ms™'). As we have seen, the root-mean-square speed of
N, molecules, for instance, is 515m s~ at 298 K.

 Example 1B.1

As shown in Example 1B.1,
Boltzmann distribution to er al
the molecules in a gas:

(SR-T’ %
Ymean =| 31
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Figure 1B.7 A summary of the conclusions that can be deduced
form the Maxwell distribution for molecules of molar mass M
atatemperature v, is the most probable speed, v ..., is the
mean speed, and v is the root-mean-square speed.

"This result is much harder to derive, but the diagram in Fig.
1B.% should help to show that it is plausible. For the relative
mean speed of two dissimilar molecules of masses m, and my;

A2 :
( 8k1 J ™, m, Perfect  Mean
Vg = H= gas relative (1B.10b)
é T m, +my, e
2!/?" .
v
-«
v
v
v
0 212y, 2u
v v v

Figure 1B.8 Asimplified version of the argument to show
that the mean relative speed of molecules in a gas is related
to the mean speed. When the molecules are moving in the
same direction, the mean relative speed is zero; it is 2v when
the molecules are approaching each other. A typical mean
direction of approach is from the side, and the mean speed
of approach is then 22y, The last direction of approach is the
most characteristic, so the mean speed of approach can be
expected to be about 2'2¢. This value is confirmed by more
detailed calculation.

CUCHITRIENLLRE:PY pajative molecular speeds

We have already seen (in Brief illustration 1B.1) that the rms
speed of N, molecules at 25°C is 515 ms™. It follows from eqn

1B.10a that their relative mean speed is

Vg =2 x(515ms™)=728ms™
' e

o
WSt

Self-test 18.3 What is the relative mean speed of N,and £
molecules in a gas at 25 °C?
Answer: L83k

18.2 Collisions

The kinetic model enables us to make the qualitative picture
a gas as a collection of ceaselessly moving, colliding molec=
more quantitative. In particular, it enables us to calculate =
frequency with which molecular collisions occur and the €
tance a molecule travels on average between collisions.

(a) The collision frequency

Although the kinetic-molecular theory assumes that the m
ecules are point-like, we can count a ‘hit’ whenever the cen®
of two molecules come within a distance d of each other, wh:
d, the collision diameter, is of the order of the actual diamet
of the molecules (for impenetrable hard spheres d is the dia
eter). As we show in the following Justification, we can use |
kinetic model to deduce that the collision frequency, 2, !
number of collisions made by one molecule divided by the ti:
interval during which the collisions are counted, when th
are N molecules in a volume Vis

Z=0U N Perfect gas  Collision frequency (1B

with W=N/V, the number density, and v, given by eqn 1B.
The area o=mnd? is called the collision cross-section of the m
ecules. Some typical collision cross-sections are given in Ta
1B.1. In terms of the pressure (as is also shown in the follow
Justification),

e Perfectgas  Collision frequency  (1B.1

Table 1B.1* Collision cross-sections, o/nm?

o/nm?
C.H, 0.88
co, 0.52
He 0.21
N, 0.43

* More values are given in the Resource section.

The collision frequency according to

the kinetic model

Consider the positions of all the molecules except one t
be frozen. Then note what happens as one mobile molect

travels through the gas with a mean relative speed v, for
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2H ‘"‘:
Once we have the collision frequency, we can calculate EHCN

5 - mean free path, A (lambda), the average distance a molecule

‘) Id Hitu travels between collisions. If a molecule collides with a fre-

= - quency z, it spends a time 1/z in free flight between collisions,

\\ and therefore travels a distance (1/z)v,. It follows that the

Area, o
mean free path is

() The mean free path

Figure 1B.9 The calculation of the collision frequency and

the mean free path in the kinetic theory of gases. /) _ Y Perfectgas
z
time At. In doing so it sweeps out a ‘collision tube’ of cross-
sectional area o=mnd? and length v ,At and therefore of vol- Substitution of the expression for zin eqn 1B.11b gives
ume ov, At (Fig. 1B.9). The number of stationary molecules S
with centres inside the collision tube is given by the volume l=k—T
of the tube multiplied by the number density ¥=N/V, and is op
Nowv, ,At. The number of hits scored in the interval At is equal =
to this number, so the number of collisions divided by the Doubling the pressure reduces the mean free path byﬁalﬂ : "‘ .
time interval is Nowv,,,, which is eqn 1B.11a, The expression el

in terms of the pressure of the gas is obtained by using the ~ ST

perfect gas equation to write Brief illustration 1B.4 The

£ N_nN _LNW__ P T, ; ;
N=y="v ART/p ~ kT In Brteftllustratmn IB.2

Equation 1B.11a shows that, at constant volume, the collision
frequency increases with increasing temperature. Equation
1B.11b shows that, at constant temperature, the collision fre-
quency is proportional to the pressure. Such a proportion-
ality is plausible because the greater the pressure, the greater
the number density of molecules in the sample, and the rate at
which they encounter one another is greater even though their
average speed remains the same. .

Brief illustration 1B.3 Molecular collisions

For an N, molecule in a sample at 1.00 atm (101 kPa) and
25°C, from Brief illustration 1B.2 we know that v,, =728 ms™.
Therefore, from eqn 1B.11b, and taking o=0.45 nm? (cox:res 5
ponding to 0.45x 10* m?) from Table 1B.1,

728ms™!

d 77x10°s"

ple of constant volume, the pressure is
T/p remains constant when the t I

_ (0.43x107¥ m?)x(728ms ™) (1.01x10° Pal
(1.381x102 JK ) x (298K)
=7.7x10%s"!

molecules present in the gL ¢
which they travel. .

In summary, a typical gas
be thought of as a collecti ;




of concepts
3 R

netic model of a gas considers only the contri-
' ?ﬁ_ﬁo’the energy from the kinetic energies of the

made by a molecule in an interval divided by h
of the interval.

. The mean free path is the average distancea
travels between collisions.

Comment Equation num

pV=inMul, Kinetic model 1B.1

~ f(©)=4n(M/2RRT)¥2y2e~Mv"2RT 1B.4

Vyme=(3RT/M)'2 1B.3

Unean= (BRT/TM)12 1B.8

Vpmp=(2RTIM)"? 1B.9

Vg=(8kT/mu)V?
H=mamyl(my+my)

1B.10

z=0v, pl/kT, o=nd*

A= vlz
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Actual gases, so-called 'real gases’, differ from perfect
gases and it is important to be able to discuss their
properties. Moreover, the deviations from perfect
behaviour give insight into the nature of the interactions
between molecules. Accounting for these interactions is
also an introduction to the technique of model building

in physical chemistry.

» What is the key idea?

Real gases do not obey the perfect gas law exactly except in the
limit of p — 0. Deviations from the law are particularly impor-
tant at high pressures and low temperatures, especially when a
gas is on the point of condensing to liquid.

1c1 Deviations from perfect |
behaviour .

Real gases show deviations from the perfect gas law because
molecules interact with one another. A point to keep in mind
is that repulsive forces between molecules assist expansion and
attractive forces assist compression.

Repulsive forces are significant only when molecules are
almost in contact: they are short-range interactions, even on
a scale measured in molecular diameters (Fig. 1C.1). Because
they are short-range interactions, repulsions can be expected
to be important only when the average separation of the mol-
ecules is small. This is the case at high pressure, when many
molecules occupy a small volume. On the other hand, attrac-
tive intermolecular forces have a relatively long range and
effective over several molecular diameters. They are imf
when the molecules are fairly close together but no
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