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16 Foundations

« More levels are significantly populated if they are
close together in comparison with kT (like
rotational and translational states), than if they are
t far apart (like vibrational and electronic states).

Energy —>

Figure B.5 summarizes the form of the Boltzmann distribu
tion for some typical sets of energy levels. The peculiar shap:
- of the population of rotational levels stems from the fact thz
eqn B.25 applies to individual states, and for molecular rota
tion quantum theory shows that the number of rotational staite

pEm——— Eeern [ - . . 2
corresponding to a given energy level —broadly speaking, th
number of planes of rotation—increases with energy; therefore
although the population of each state decreases with energy, tht

population of the levels goes through a maximum.

One of the simplest examples of the relation between micro
scopic and bulk properties is provided by kinetic moleculla’
theory, a model of a perfect gas. In this model, it is assumec
that the molecules, imagined as particles of negligible size, art

Figure B.4 The Boltzmann distribution of populations for a

system of five energy levels as the temperature is raised from
zero to infinity.

constant. When both the numerator and denominator in the
exponential are multiplied by N, eqn B.25a becomes
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their brief collisions. Different speeds correspond to differen
energies, so the Boltzmann formula can be used to predict the
proportions of molecules having a specific speed at a particulal
temperature. The expression giving the fraction of molecules
that have a particular speed is called the Maxwell-Boltzmanr
distribution and has the features summarized in Fig. B.6. The
Maxwell-Boltzmann distribution can be used to show that the

average speed, v, ..., of the molecules depends on the tempera-
LUCRIENLLRAY Relative populations Sis i P P

ture and their molar mass as

where R=N, k. We see that k is often disguised in ‘molar’ form
as the gas constant. The Boltzmann distribution provides the
crucial link for expressing the macroscopic properties of matter
in terms of microscopic behaviour.

Methyl cyclohexane molecules may exist in one of two confor-

12
: - e . : 8RT
mat.u:'ms.wnh the met'hyl group in elth_er an equatc?rml or axial v :( 8 ) Perfectgas PR ECRR RS R
position. The equatorial form is lower in energy with the axial M
form being 6.0k] mol! higher in energy. At a temperature of

300K, this difference in energy implies that the relative popu- Thus, the average speed is high for light molecules at high tem-
lations of molecules in the axial and equatorial states is peratures. The distribution itself gives more information. Fol
instance, the tail towards high speeds is longer at high tempera:
tures than at low, which indicates that at high temperatures more
molecules in a sample have speeds much higher than average.

.N.l_=e-(E.—E,VRT =e-(b.0xlb‘lmol DAB.3145]K ' mol ' x300K) =0.090
e

~ where E, and E, are molar energies. The number of molecules

:- i!un axial conformation is therefore just 9 per cent of those in R taronal Vibrational Electronid
 the equatorial conformation.

* Self-test B.7 Determine the temperature at which the relative
- proportion of molecules in axial and equatorial conforma-
tions in a sample of methyl cyclohexane is 0.30 or 30 per cent.

: Answer: 600 K

Energy —>

'The important features of the Boltzmann distribution to bear
in mind are:

« The distribution of populations is an exponential
function of energy and temperature.

+ Ata high temperature more energy levels are
occupied than at a low temperature.

e Rt
25 Figure B.5 The Boltzmann distribution of populations for

rotational, vibrational, and electronic energy levels at room
temperature.
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Figure B.6 The (Maxwell-Boltzmann) distribution of molecular
speeds with temperature and molar mass. Note that the most
probable speed (corresponding to the peak of the distribution)
increases with temperature and with decreasing molar mass,
and simultaneously the distribution becomes broader.

b) Equipartition

Although the Boltzmann distribution can be used to calculate
the average energy associated with each mode of motion of an
atom or molecule in a sample at a given temperature, there is a
much simpler shortcut. When the temperature is so high that
many energy levels are occupied, we can use the equipartition
theorem:

For a sample at thermal equilibrium the average value of
each quadratic contribution to the energy is 1 kT.

By a ‘quadratic contribution’ we mean a term that is propor-
tional to the square of the momentum (as in the expression for
the kinetic energy, E,=p*/2m) or the displacement from an

equilibrium position (as for the potential energy of 2 a harmomc
oscillator, E, =1k x?). The theorem is strictly valrdioniff&
temperatures or if the separation between energy levels is small
because under these conditions many states are populated."lihe
equipartition theorem is most reliable for translational and
rotational modes of motion. The separation between vibra-
tional and electronic states is typically greater than for rotation
or translation, and so the equipartition theorem is um:ellaple
for these types of motion.

Brief illustration B.8 AVel’aﬁ ;

An atom or molecule may
its translational kinetic ener
quadratic contributions o]

E\rans = s 03+ 3 mu} +-Lmv’"

E\ranam =2 %(8.3145] K- m
=3.7kJ mol™" i )

Checklist of concepts

[J 1. Newton’s second law of motion states that the rate of

change of momentum is equal to the force acting on the
particle.
2. Work is done in order to achieve motion against an
opposing force.
3. Energy is the capacity to do work.
4, The kinetic energy of a particle is the energy it pos-
sesses as a result of its motion.
The potential energy of a particle is the energy it pos-
sesses as a result of its position.
6. The total energy of a particle is the sum of its kinetic
and potential energies.
7. The Coulomb potential energy between two charges
separated by a distance r varies as 1/r.
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0O 8. The First Law of thermodynamics s
nal energy is constantin a syst em isol:
nal influences. wyire

O 9. The Second Law of thermod
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- of equations

ation  Commem

Equation number
v=dr/dt Definition

B.1
p=mv Definition B.2

J=Iw, I=mr* Point particle B.3-B.4

F=ma=dp/dt Definition B.5

T=dJ/dt Definition B.6

dw=-F.ds Definition B.7

E, =%mu? Definition B.8

F,=—dV/dx One dimension

Vi(r)=0Q,Q,/4neyr Vacuum
¢=Q,/4AnEyr Vacuum

E=-d¢/dx One dimension

P=IAd I'is the current

C=du/dT U is the internal energy

H=U+pV Definition
G=H-TS Definition

NNy =eam T

 Upean =(8RT/mM)" Perfect gas
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» Why do you need to know this material?

Several important investigative techniques in physical
chemistry, such as spectroscopy and X-ray diffraction, involve
electromagnetic radiation, a wavelike electromagnetic
disturbance. We shall also see that the properties of waves
are central to the quantum mechanical description of
electrons in atoms and molecules. To prepare for those
discussions, we need to understand the mathematical
description of waves.

» What is the key idea?

A wave is a disturbance that propagates through space
with a displacement that can be expressed as a harmonic
function.

» What do you need to know already?

You need to be familiar with the properties of harmonic
(sine and cosine) functions.

A wave is an oscillatory disturbance that travels through space.
Examples of such disturbances include the collective motion of
water molecules in ocean waves and of gas particles in sound
waves. A harmonic wave is a wave with a displacement that can
be expressed as a sine or cosine function.

ci1 Harmonic waves

A harmonic wave is characterized by a wavelength, A (lambda),
the distance between the neighbouring peaks of the wave,
and its frequency, v (nu), the number of times per second at

which its displacement at a fixed point returns to its original
value (Fig. C.1). The frequency is measured in hertz, where
1 Hz=1s"". The wavelength and frequency are related by

(Cn)

Av=v Relation between frequency and wave
where v is the speed of propagation of the wave.

First, consider the snapshot of a harmonic wave at t=0. The
displacement y(x,t) varies with position x as

Harmonic wave att=0 (C.2a)

where A is the amplitude of the wave, the maximum height of
the wave, and @ is the phase of the wave, the shift in the location
of the peak from x=0 and which may lie between - and 7 (Fig.
C.2). As time advances, the peaks migrate along the x-axis (the
direction of propagation), and at any later instant the displace-
ment is

Y (x,0)=Acos{(2m/A)x + ¢}

w(x,t)=Acos{(2m/A)x—2mvt+ @} Harmonic w

A given wave can also be expressed as a sine function with the
same argument but with ¢ replaced by ¢+ m.

If two waves, in the same region of space, with the same
wavelength, have different phases then the resultant wave, the
sum of the two, will have either enhanced or diminished ampli-
tude. If the phases differ by #7 (so the peaks of one wave coin-
cide with the troughs of the other), then the resultant wave, the
sum of the two, will have a diminished amplitude. This effect is
called destructive interference. If the phases of the two wax

Waveleng%

(a)

Propagation
opfgaol
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Figure C.2 The phase ¢ of a wave specifies the relative location
of its peaks.

are the same (coincident peaks), the resultant has an enhanced
amplitude. This effect is called constructive interference.

Brief illustration C.1 Resultant waves

To gain insight into cases in which the phase difference
is a value other than *m, consider the addition of the waves
f(x)=cos(2nx/A) and g(x) =cos{(2nx/A) + ¢}. Figure C.3 shows
plots of f(x), g(x), and f(x) +g(x) against x/A for ¢=m/3. The
resultant wave has a greater amplitude than either f(x) or g(x),
and has peaks between the peaks of f(x) and g(x).
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Figure C.3 Interference between the waves discussed in
Brief illustration C.1.

Self-test C.1 Consider the same waves, but with ¢=23n/4. Does
the resultant wave have diminished or enhanced amplitude?

Answer: Diminished amplitude

c2 The electromagnetic field

Light is a form of electromagnetic radiation. In classical phys-
ics, electromagnetic radiation is understood in terms of tbe
electromagnetic field, an oscillating electric and magnetic dis-
turbance that spreads as a harmonic wave through space. An
electric field acts on charged particles (whether stationary or

moving) and a magnetic field acts only on moving changé
particles.

The wavelength and frequency of an electromagnetic wave ¥
a vacuum are related by

i Electromagnetic Relation between
= wave in a vacuum frequency and wavelenath

(€
where ¢=2.99792458x 108 ms™! (which we shall normal!
quote as 2.998x10°ms™) is the speed of light in a vacuur
When the wave is passing through a medium (even air), if
speed is reduced to ¢’ and, although the frequency remain
unchanged, its wavelength is reduced accordingly. The reduces
speed of light in a medium is normally expressed in terms €
the refractive index, n, of the medium, where
c

n,= r Refractive index  (C-4
The refractive index depends on the frequency of the light, an<
for visible light typically increases with frequency. It also depenid
on the physical state of the medium. For yellow light in water 2
25°C, n,=1.3, so the wavelength is reduced by 30 per cent.

The classification of the electromagnetic field accordingto it
frequency and wavelength is summarized in Fig. C.4. Itis ofter
desirable to express the characteristics of an electromagnetic
wave by giving its wavenumber, ¥ (nu tilde), where

1
== Electromagnetic radiation ~ Wavenumber  (C.5]

A wavenumber can be interpreted as the number of complete
wavelengths in a given length (of vacuum). Wavenumbers arr
normally reported in reciprocal centimetres (cm™!), so a wave:

number of 5cm™ indicates that there are 5 complete wave:
lengths in 1 cm.

Brief illustration C.2 Wavenumbers

The wavenumber of electromagnetic radiation of wavelength
660 nm is

L ] 1
L L 6 o=l — -1
v 2 = 660%10 1.5%10°m 15000cm

You can avoid errors in converting between units of m~ and
cm™ by remembering that wavenumber represents the num-
ber of wavelengths in a given distance. Thus, a wavenumber
expressed as the number of waves per centimetre and hencein
units of cm™ must be 100 times less than the equivalent quan-
tity expressed per metre in units of m-'. 3
Self-test C.2 Calculate the wavenumber and frequency of l'eti‘i
light, of wavelength 710 nm. 'jl
~ Answer: 7=141x10° m~' =1.41x10% cm”
v=422THz (1 THz=10"s’




