6. Define L.P.P. Solve the following L.P.P using graphical method/ simplex method.
${ }^{7} \operatorname{Max} Z=8 x_{1}+5 x_{2}$
Subject to $x_{1} \leq 150$

$$
\begin{aligned}
& x_{2} \leq 250 \\
& 2 x_{1}+x_{2} \leq 500 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

a) Find the dual of the following L.P.P.
$\operatorname{Max} Z=3 x_{1}+2 x_{2}+5 x_{3}$
Subject to $x_{1}+2 x_{2}+x_{3} \leq 430$

$$
\begin{gathered}
3 x_{1}+2 x_{2} \leq 460 \\
x_{1}+4 x_{2} \leq 420 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

b) Find the basic feasible solution of the following transportation using the North-West Corner method

W_{1}	W_{2}	W_{3}	W_{4}	Supply \downarrow
10	0	20	11	20
12	7	9	20	25
0	14	16	18	15
10	15	15	20	\leftarrow Demand

8. a) If $A=\left(\begin{array}{ccc}1 & 2 & 0 \\ 3 & -1 & 4\end{array}\right)$, find $A A^{T}$ and $A^{T} A$.
b) Determine the rank of the following matrices:
(i) $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5\end{array}\right)$
(ii) $B=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 5 & 6\end{array}\right)$

BACHELOR OF COMMERCE
 SECOND SEMESTER (REPEAT)
 BUSINESS MATHEMATICS
 BCM-202
 (Use separate answer scripts for Objective \& Descriptive)

Full Marks : 70
Duration : 3 hrs.

(PART-A: Objective)

Time : 20 min.
Choose the correct answer from the following:

1. Consider the following statement:

P : Convex set is always bounded
Q: Circle is an example of convex set.
a. Only P is true.
b. Only Q is true.
c. Both P and Q are true.
d. Both P and Q are false.
2. Consider the following statement:

P: Feasible solution is always outside the feasible region.
Q : If the feasible region is unbounded then either maximum or minimum value of objective
function can be determine
a. Only P is true.
c. Both P and Q are true.
b. Only Q is true.
d. Both P and Q are false.
3. The dual of the following L.P.P
$\operatorname{Max} Z=2 x_{1}+5 x_{2}$
Subject to $x_{1}+x_{2} \leq 5$

$$
-x_{1}+x_{2} \leq 1
$$

$$
x_{1}, x_{2} \geq 0
$$

has the following objective function
a. $\operatorname{Max} Z=5 x_{1}+x_{2}$
b. $\operatorname{Min} Z=5 x_{1}+x_{2}$
c. $\operatorname{Min} Z=2 x_{1}+5 x_{2}$
d. None of these.
4. Consider the following statement:

P: Dual of a dual is dual.
Q: If the primal has unbounded solution then the dual has infeasible solution.
a. Only P is true.
b. Only Q is true.
c. Both P and Q are true.
d. Both P and Q are false.
5. The formula to find compound interest is:
($P=$ Principal, $r=$ Rate of C.I $n=$ Number of years)
a. $p\left(1+\frac{r}{100}\right)^{n}$
b. $p\left(1+\frac{r}{100}\right)^{x}-p$
c. $P\left(+\frac{n}{120}\right)^{r}-P$
d. $P\left(1+\frac{r}{100}\right)^{n}+P$
6. In what time will Rs. 1250 amount to Rs. 1400 at 6% per annum?
a. 2 years
b. 3 years
c. 4 years
d. 5 years
7. For the general formula of simple interest $:=\frac{p n r}{100}$ gives:

b. $p=\frac{n r}{1001}$
d. $p=\frac{100 n}{}$
8. The minor of 4 in $\left|\begin{array}{cc}3 & -14 \\ 5 & 4\end{array}\right|$
a. 0
c. -3
b. 3
9. The value of $\lim _{x \rightarrow 0}(5 x+4)$ is a. 0 c. 4
10. The value of $\left|\begin{array}{cc}1 & 11 \\ -6 & 5\end{array}\right|$ is
a. 17
b. 19
c. 71
d. 91
11. If $f(x)=\frac{1-x}{1+a}$, then $f\left(\frac{1}{2}\right)$
a. 1
c. $\frac{1}{3}$
b. $\frac{1}{2}$
d. None of these
12. The determinant of a unit matrix is a. 0
b. 1
c. 2
d. 3
13. If a is the $1^{\text {st }}$ term and d is the common difference of an A.P series, then the last term is
a. $a+n d$
b. $a+(n+1) d$
c. $a+(n-2) d$
d. $a+(n-1) d$
14. $\frac{d}{d x}\left(x^{n+1}\right)$ is
a. 1
b. $(n+1) x^{n}$
c. $(n-1) x^{n-1}$
d. $(n+1) x$
15. The value of $1+2+3+\ldots . .+n$ is
a. $n(n+1)$
b. $n(n+1)$
c. $\frac{n(n-1)}{2}$
d. None of these
16. A matrix A is said to be singular if the determinant of A is a. 0
b. 1
c. 2
d. 3
17. The value of $\frac{d}{d x}(\log x)$ is
a. x
b. $\frac{1}{}$
c. $x-1$
d. None of these
18. If the roots of a quadratic equation $a x^{2}+b x+c=0$ are complex, then
a. $b^{2}-4 a c>0$
b. $b^{2}-4 a c=0$
c. $b^{2}-4 a c<0$
d. None of these
19. The geometric mean of a and b is

a. $\frac{a+b}{2}$	b. $\sqrt{a b}$
c. $a-b$	d. None of these

20. A matrix whose number of rows and columns are equal is called
a. Null matrix
c. Non square matrix
b. Identity matrix

(PART-B: Descriptive)

[Answer question no. 1 \& any four (4) from the rest]

1. a) Find the transpose and the adjoint of the matrix :

$$
A=\left(\begin{array}{ccc}
3 & 1 & 2 \\
2 & -3 & -1 \\
1 & 2 & 1
\end{array}\right)
$$

b) Solve the following linear equations by matrix method.

$$
\begin{aligned}
& 3 x+y+2 z=3 \\
& 2 x-3 y-z=-3 \\
& x+2 y+z=4
\end{aligned}
$$

2. a) The $5^{\text {th }}$ and the $12^{\text {th }}$ terms of an A.P series are 14 and 25 respectively. $2+3+3+2=10$ Find the first term and the common difference.
b) The sum of three numbers in A.P is 15 and their product is 80 . Find the numbers.
c) The second term of a G.P series is 9 and the fifth term is 243 . Find the fourth term of the series.
d) Find the eight and the tenth terms of the series $2,4,6,8,16 \ldots \ldots$
3. a) Define limit and continuity of a function.
b) Evaluate the following:
(i) $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x-3}$
(ii) $\lim _{x \rightarrow-2} \frac{x^{2}+5 x+\epsilon}{x^{3}-4}$
c) Find the continuity of the following functions at $x=1$
(i) $f(x)=\left\{\begin{array}{c}1-x, 0 \leq x \leq 1 \\ x-1, x \geqslant 1\end{array}\right.$
(ii) $f(x)=\left\{\begin{array}{r}x-1, x>1 \\ -x, x<0 \\ x, 0 \leq x \leq 1\end{array}\right.$
4. a) Solve : (i) $5 x^{2}+5 x-30=0 \quad$ (ii) $(x-7)(x-19)=64$
b) If one root of $x^{2}-p x+q=0$ is twice the other, then show that $2 p^{2}=9 q$
c) Examine the nature of the following quadratic equations:
(i) $3 x^{2}+2 x-2=0$
(ii) $2 x^{2}-5 x+4=0$
5. a) The compound interest on a certain sum of money for two years is Rs. 920.25 and the simple interest is Rs. 900.00 . Find the sum and the rate of interest.
b) Find the amount of an annuity consisting of payments of Rs. 800 at the end of every 3 months for 3 years at the rate of 8% compounded quarterly.
