a. From a group consisting of 6 boys and 7 girls, in how many ways can 8+2=10 we select a group of

I. 3 boys and 4 girls

- II. 4 persons which has atleast one girl.
- III. 4 persons which has atleast one boy.
- IV. 4 persons that has both boys and girls.
- **b.** Prove by mathematical method $n! \ge 2^{n-1}$, for n = 1,2,3
- 8. a. Define proposition with an example.
 - b. Define conjunction and disjunction for any two propositions *p* and *q*. Construct the truth table for both the connectives.
 - c. Write down the primal and dual form of the idempotent law and identity law.

= = *** = =

REV-00 BCA/R/03/08

Duration: 3 hrs.

Time: 20 min.

2+6+2=10

BACHELOR OF COMPUTER APPLICATION SECOND SEMESTER (REPEAT) DISCRETE MATHEMATICS

BCA-204

(Use separate answer scripts for Objective & Descriptive)

Charles and the state of the second second

(<u>PART-A: Objective</u>)

Marks: 20

1X20=20

Full Marks: 70

Choose the correct answer from the following:

A function f:X → Y is a one-one function if

 a. f(x₁) = f(x₂) whenever x₁ = x₂
 c. f(x₁) ≠ f(x₂) whenever x₁ = x₂

b. $f(x_1) = f(x_2)$ whenever $x_1 \neq x_2$ d. None of these

- 2. If $A = \{1,2,3\}$ and $B = \{w, x, y, z\}$, then the number of functions $f: A \rightarrow B$ is: a. 64 b. 81 c. 12 d. None of these.
- 3. The function $f: \mathbb{Z} \to \mathbb{N}$ defined as $f(x) = \begin{cases} 2x 1, & \text{if } x > 0 \\ -2x, & \text{if } x \le 0 \end{cases}$. Then the value of f(1) and f(-1) are:
 - a. 1 and -2 c. -1 and -2

- b. 1 and 2 d. None of these
- 4. The function $f: A \to A$ defined as f(x) = x where $x \in A$ is a a. Constant function c. Both (a) and (b) b. Identity function d. None of these

5. Consider the following statement:
P: A graph with *n* vertices and *n* – 1edges is called tree.
Q: A tree is a connected graph.
a. Only P is true.
b. Only Q

- b. Only Q is true d. Both P and Q are false.
- 6. The chromatic number of C₅ and C₆ are:
 a. 5 and 6 respectively.
 c. 3 and 2 respectively
- b. 2 and 3 respectively d. None of these.

7. Consider the following statement:P: Every tree with two or more vertices has chromatic number 2.Q: Chromatic number of *K_n* is *n*.

a. P is true, Q is false c. P and Q are true.

c. Both P and Q are true

- b. P is false, Q is true d. None of these.
- 8. A graph with 8 vertices and 6 faces. Then the number of edges of the graph is:
 a. 14
 b. 12
 c. 16
 d. None of these
- 9. The order of -1 in the group G = {1, -1, i, -i} with respect to multiplication is
 a. 1
 b. 2
 c. 3
 d. 4

[1]

10. Which of the following graph has Hamiltonian path but not Hamiltonian cycle?

a.	ь. С	(<u>PART-B : Descriptive</u>) Time : 2 hrs. 40 min.	Marks: 50
	d. None of these	[Answer question no.1 & any four (4) from the rest]	
 11. Which of the following is true? a. <i>P</i>(<i>n</i>, <i>n</i>) = 2!. c. <i>P</i>(<i>n</i>, 2) = 2!. 	b. $C(n,n) = 1$ d. None of these	 a. Define conditional and biconditional propositions and also give the truth tables. b. What is equivalence of propositions. Show that (p → q) ↔ ~p∨q. 	6+4=10
12. The value of <i>C</i> (5,2) is a. 5 c. 15	b. 10 d. 20	 a. Define group with an example. b. Show that the set Q⁺ of all positive rational numbers forms an abelian group under the operation * defined by a * b = ¹/₂ab; a, b ∈ Q⁺. 	4+6=10
 13. The proposition (p → ~p) → ~p is a. Tautology c. Either tautology or contradiction 	b. Contradiction d. None of these	3. If $S = \{1,2,3,4,5\}$ and if the function $f, g, h: S \to S$ are given by: $f = \{(1,2), (2,1), (3,4), (4,5), (5,3)\}$ $g = f(1,3), (2,5), (3,1), (4,2), (5,4)\}$	4+3+3=10
 14. If <i>p</i> is true, then the truth value of <i>p</i> ∧ ~<i>p</i> w a. T c. Cannot be said 	rill be b. F d. None of these		
15. For the sequence 4,12,36,, the recurrence a. $a_{n+1} = 2$ c. $a_{n+1} = 3a_n$	relation is b. $a_{n+1} = a_n$ d. None of these	b. Explain why f and g have inverse but h does not. c. Find f^{-1} and g^{-1} .	
16. Which of the following is not truea. A cyclic group is always abelianc. In a ring <i>R</i>, (<i>R</i>, +) is a group	b. The identity in a group is unique d. None of these	4. If $f: \mathbb{Z} \to \mathbb{N}$ is defined by $f(x) = \begin{cases} 2x - 1, if \ x > 0 \\ -2x, & if \ x \le 0 \end{cases}$ a. Prove that f is one-one and onto b. Determine f^{-1} .	6+4=10
17. The dual of $p \lor T \equiv T$ is a. $p \lor T \equiv F$ c. $p \land T \equiv T$	b. $p \lor F \equiv F$ d. $p \land F \equiv F$	 a. Define Decomposition of a graph. Prove that - A graph containing m edges {e₁. e₂,, e_m} can be decomposed into 2^{m-1} - 1 different ways 	6+4=10
18. Which of the following is not a groupa. (<i>R</i>, .)c. (<i>R</i>, +)	b. (<i>Z</i> , +) d. None of these	 into pairs subgraphs G₁ and G₂. b. Define Complete Graph, Regular Graph and Planer Graph. 	2+4+4-10
 19. A poset (L, ≤) is called lattice if every pair a. Supremum c. Both supremum and infimum 	of elements in L has b. Infimum d. Neither supremum nor infimum	 a. State Flandshaking theorem. A graph consists of four vertices each of degree <i>m</i> and an isolated vertex. Find the number of edge of the graph. b. Find adjacent matrix and incident matrix of the following graph: 	2+4+4-10
 20. An ordered arrangement of <i>r</i> elements of a set containing <i>n</i> distinct elements is called a/an a. <i>r</i>- permutation of <i>n</i> elements b. <i>r</i>-combination of <i>n</i> elements 		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
c. Pigeonhole principle	d. None of these	3 4 3	

. [3]