BACHELOR OF COMPUTER APPLICATION SECOND SEMESTER (REPEAT) DISCRETE MATHEMATICS

 BCA-204

 BCA-204
 (Use separate answer scripts for Objective \& Descriptive)

(PART-A: Objective)

Time : 20 min .

Choose the correct answer from the following:

8. a. Define proposition with an example.
b. Define conjunction and disjunction for any two propositions p and q. Construct the truth table for both the connectives.
c. Write down the primal and dual form of the idempotent law and identity law.
9. A function $f: X \rightarrow Y$ is a one-one function if
a. $f\left(x_{1}\right)=f\left(x_{2}\right)$ whenever $x_{1}=x_{2}$
b. $f\left(x_{1}\right)=f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$
c. $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1}=x_{2}$
d. None of these
10. If $A=\{1,2,3\}$ and $B=\{w, x, y, z\}$, then the number of functions $f: A \rightarrow B$ is:
a. 64
b. 81
c. 12
d. None of these.
11. The function $f: \mathbb{Z} \rightarrow \mathbb{N}$ defined as $f(x)=\left\{\begin{array}{ll}2 x-1, & \text { if } x>0 \\ -2 x, & \text { if } x \leq 0 .\end{array}\right.$. Then the value of $f(1)$ and $f(-1)$ are:
a. 1 and -2
b. 1 and 2
c. -1 and -2
d. None of these
12. The function $f: A \rightarrow A$ defined as $f(x)=x$ where $x \in A$ is a
a. Constant function
b. Identity function
c. Both (a) and (b)
d. None of these
13. Consider the following statement:

P: A graph with n vertices and $n-1$ edges is called tree.
Q : A tree is a connected graph.
a. Only P is true.
c. Both P and Q are true

> b. Only Q is true
> d. Both P and Q are false.
6. The chromatic number of C_{5} and C_{6} are: a. 5 and 6 respectively.
b. 2 and 3 respectively
c. 3 and 2 respectively
d. None of these.
7. Consider the following statement:

P: Every tree with two or more vertices has chromatic number 2.
Q: Chromatic number of K_{n} is n.
a. P is true, Q is false
b. P is false, Q is true
c. P and Q are true.
d. None of these.
8. A graph with 8 vertices and 6 faces. Then the number of edges of the graph is:
a. 14
c. 16
d. None of these
9. The order of -1 in the group $G=\{1,-1, i,-i\}$ with respect to multiplication is
a. 1
b. 2

1]
a.

b.

(PART-B: Descriptive

c.

d. None of these
11. Which of the following is true?
a. $P(n, n)=2!$.
c. $P(n, 2)=2!$.
b. $C(n, n)=1$
d. None of these
12. The value of $C(5,2)$ is
a. 5
b. 10
c. 15
d. 20
13. The proposition $(p \rightarrow \sim p) \rightarrow \sim p$ is
a. Tautology
b. Contradiction
c. Either tautology or contradiction
d. None of
14. If p is true, then the truth value of $p \wedge \sim p$ will be
a. T
b. F
c. Cannot be said
d. None of these
15. For the sequence $4,12,36, \ldots$, the recurrence relation is
a. $a_{n+1}=2$
b. $a_{n+1}=a_{n}$
c. $a_{n+1}=3 a_{n}$
d. None of these
16. Which of the following is not true
a. A cyclic group is always abelian
c. In a ring $R,(R,+)$ is a group
b. The identity in a group is unique
7. The dual of $p \vee T \equiv T$ is
a. $p \vee T \equiv F$
$p \wedge F \equiv F$
c. $p \wedge T \equiv T$
d. $p \wedge F \equiv F$
18. Which of the following is not a group
a. $\left(R_{1}\right)$
b. $(Z,+)$
c. $(R,+)$
d. None of these
19. A poset (L, \leq) is called lattice if every pair of elements in L has
a. Supremum
b. Infimum
c. Both supremum and infimum
d. Neither supremum nor infimum
20. An ordered arrangement of \boldsymbol{r} elements of a set containing n distinct elements is called a/an
a. r-permutation of n elements
b. r-combination of n elements
c. Pigeonhole principle

Time : 2 hrs. 40 min .

[Answer question no. 1 \& any four (4) from the rest]

1. a. Define conditional and biconditional propositions and also give the truth tables.
b. What is equivalence of propositions. Show that $(p \rightarrow q) \leftrightarrow \sim p \vee q$.
2. a. Define group with an example.
b. Show that the set Q^{+}of all positive rational numbers forms an abelian group under the operation * defined by $a * b=\frac{1}{2} a b ; a, b \in Q^{+}$.
3. If $S=\{1,2,3,4,5\}$ and if the function $f, g, h: S \rightarrow S$ are given by: $f=\{(1,2),(2,1),(3,4),(4,5),(5,3)\}$ $g=\{(1,3),(2,5),(3,1),(4,2),(5,4)\}$
$h=\{(1,2),(2,2),(3,4),(4,3),(5,1)\}$
(Here $(a, b) \in f \Rightarrow f(b)=a,(p, q) \in g \Rightarrow g(q)=p(x, y) \in h \Rightarrow h(y)=x)$
a. Verify whether $f \circ g=g \circ f$.
b. Explain why f and g have inverse but h does not.
c. Find f^{-1} and g^{-1}.
4. If $f: \mathbb{Z} \rightarrow \mathbb{N}$ is defined by $f(x)= \begin{cases}2 x-1, \text { if } x>0 \\ -2 x, & \text { if } x \leq 0\end{cases}$
a. Prove that f is one-one and onto
b. Determine f^{-1}.
5. a. Define Decomposition of a graph. Prove that - A graph containing m edges $\left\{e_{1}, e_{2}, \cdots, e_{m}\right\}$ can be decomposed into $2^{m-1}-1$ different ways into pairs subgraphs G_{1} and G_{2}.
b. Define Complete Graph, Regular Graph and Planer Graph.
6. a. State Handshaking theorem. A graph consists of four vertices each of $2+4+4=10$ degree m and an isolated vertex. Find the number of edge of the graph. b. Find adjacent matrix and incident matrix of the following graph:

	1			5	
2		9		8	5
2		6		7	4
			3		4

