REV-00 BCA/37/42

> BACHELOR OF COMPUTER APPLICATION SECOND SEMESTER

DISCRETE MATHEMATICS

BCA-203

(Use separate answer scripts for Objective & Descriptive) **Full Marks : 70**(PART-A : Objective)

Time : 20 min.

Duration: 3 hrs.

Marks: 20

1X20=20

- Choose the correct answer from the following:
- **1.** A function $f: X \to Y$ is a one-one function if **a.** $f(x_1) = f(x_2)$ whenever $x_1 = x_2$ **b.** $f(x_1) = f(x_2)$ whenever $x_1 \neq x_2$ **c.** $f(x_1) \neq f(x_2)$ whenever $x_1 = x_2$ **d.** None of these
- 2. If $A = \{1,2,3\}$ and $B = \{w, x, y, z\}$, then the number of functions $f: A \rightarrow B$ is: a. 64 b. 81 c. 12 d. None of these.
- 3. The function $f: \mathbb{Z} \to \mathbb{N}$ defined as $f(x) = \begin{cases} 2x 1, & \text{if } x > 0 \\ -2x, & \text{if } x \le 0 \end{cases}$. Then the value of f(1) and f(-1) are:
 - a. 1 and -2 c. -1 and -2
- b. 1 and 2 d. None of these
- 4. The function f: A → A defined as f(x) = x where x ∈ A is a
 a. Constant function
 c. Both (a) and (b)
 d. None of these
- 5. Consider the following statement:
 - P: A graph with n vertices and n 1 edges is called tree.
 - Q: A tree is a connected graph.
 - a. Only P is true. c. Both P and Q are true
- d. Both P and Q are false.
- 6. The chromatic number of C₅ and C₆ are:
 a. 5 and 6 respectively.
 c. 3 and 2 respectively
- **b.** 2 and 3 respectively **d.** None of these.

b. Only Q is true

- 7. Consider the following statement: P: Every tree with two or more vertices has chromatic number 2.
 - Q: Chromatic number of K_n is n.
 - a. P is true, Q is falseb. P is false, Q is truec. P and Q are true.d. None of these.
- 8. A graph with 8 vertices and 6 faces. Then the number of edges of the graph is:
 a. 14
 b. 12
 c. 16
 d. None of these
- 9. The order of -1 in the group G = {1, -1, i, -i} with respect to multiplication is

 a. 1
 b. 2
 c. 3

- 7. a. From a group consisting of 6 boys and 7 girls, in how many ways can 8+2=10 we select a group of
 - I. 3 boys and 4 girls
 - II. 4 persons which has atleast one girl.
 - III. 4 persons which has atleast one boy.
 - IV. 4 persons that has both boys and girls.
 - **b.** Prove by mathematical method $n! \ge 2^{n-1}$, for $n = 1, 2, 3 \dots$
- 8. a. Define proposition with an example.

2+6+2=10

- **b.** Define conjunction and disjunction for any two propositions *p* and *q*. Construct the truth table for both the connectives.
- **c.** Write down the primal and dual form of the idempotent law and identity law.

= = *** = =

[4]

10. Which of the following graph has Hamiltonian path but not Hamiltonian cycle?

10. Which of the following graph has Hamilton		
a. 0	b. 0-0	
	6 6	
	$\langle \rangle$	
	\checkmark	
· · · · · · · · · · · · · · · · · · ·	d. None of these	
0 0 0 0		
11. Which of the following is true?		
a. $P(n,n) = 2!$.	b. $C(n,n) = 1$	
c. $P(n, 2) = 2!$.	d. None of these	
12. The value of $C(5,2)$ is		
a. 5	b. 10	
c. 15	d. 20	
13. The proposition $(p \rightarrow \sim p) \rightarrow \sim p$ is		
a. Tautology	b. Contradiction	
	d. None of these	
c. Either tautology or contradiction	u. None of these	
14. If <i>p</i> is true, then the truth value of $p \land \sim p w$	ill be	
a. T	b. F	
c. Cannot be said	d. None of these	
15. For the sequence 4,12,36,, the recurrence	relation is	
a. $a_{n+1} = 2$	b. $a_{n+1} = a_n$	
c. $a_{n+1} = 3a_n$	d. None of these	
16. Which of the following is not true		
a. A cyclic group is always abelian	b. The identity in a group is unique	
c. In a ring R , $(R, +)$ is a group	d. None of these	
17. The dual of $p \lor T \equiv T$ is		
a. $p \lor T \equiv F$	b . $p \lor F \equiv F$	
c. $p \wedge T \equiv T$	$\mathbf{d}.p\wedge F\equiv F$	
18. Which of the following is not a group		
a. (R,.)	b. (Z, +)	
c. $(R, +)$	d. None of these	
C. (R, T)	u. None of these	
19. A poset (L, \leq) is called lattice if every pair of	of elements in L has	
a. Supremum	b. Infimum	
c. Both supremum and infimum	d. Neither supremum nor infimum	
20. An ordered arrangement of r elements of a set containing n distinct elements is called		
a/an		
a. <i>r</i> - permutation of <i>n</i> elements	b. <i>r</i> -combination of <i>n</i> elements	
c. Pigeonhole principle	d. None of these	

(<u>PART-B : Descriptive</u>)	
Time : 2 hrs. 40 min.	Marks: 50
[Answer question no.1 & any four (4) from the rest]	
 a. Define conditional and biconditional propositions and also give the truth tables. b. What is equivalence of propositions. Show that (p → q) ↔ ~p∨q. 	6+4=10
 a. Define group with an example. b. Show that the set Q⁺ of all positive rational numbers forms an abelian group under the operation * defined by a * b = ¹/₂ab; a, b ∈ Q⁺. 	4+6=10
3. If $S = \{1,2,3,4,5\}$ and if the function $f, g, h: S \to S$ are given by: $f = \{(1,2), (2,1), (3,4), (4,5), (5,3)\}$ $g = \{(1,3), (2,5), (3,1), (4,2), (5,4)\}$ $h = \{(1,2), (2,2), (3,4), (4,3), (5,1)\}$ (Here $(a, b) \in f \Rightarrow f(b) = a, (p,q) \in g \Rightarrow g(q) = p (x,y) \in h \Rightarrow h(y) = x$) a. Verify whether $f \circ g = g \circ f$. b. Explain why f and g have inverse but h does not. c. Find f^{-1} and g^{-1} .	4+3+3=10
4. If $f: \mathbb{Z} \to \mathbb{N}$ is defined by $f(x) = \begin{cases} 2x - 1, & \text{if } x > 0 \\ -2x, & \text{if } x \le 0 \end{cases}$ a. Prove that <i>f</i> is one-one and onto b. Determine f^{-1} .	6+4=10
 a. Define Decomposition of a graph. Prove that - A graph containing <i>m</i> edges {<i>e</i>₁. <i>e</i>₂,, <i>e_m</i>} can be decomposed into 2^{<i>m</i>-1} - 1 different ways into pairs subgraphs <i>G</i>₁ and <i>G</i>₂. b. Define Complete Graph, Regular Graph and Planer Graph. 	6+4=10
 a. State Handshaking theorem. A graph consists of four vertices each of degree <i>m</i> and an isolated vertex. Find the number of edge of the graph. b. Find adjacent matrix and incident matrix of the following graph: 	2+4+4=10

.

-- --- --