REV-00 BCA/R/08/13

2018/06

BACHELOR OF COMPUTER APPLICATION SECOND SEMESTER (REPEAT) DIGITAL LOGIC AND DESIGN

	BCA-	201	
Du	ration : 3 hrs.		Full Marks: 70
	PART-A : C	biective]	
Tir	ne : 20 min.		Marks:20
C	hoose the correct answer from the follow	ving:	1X20=20
1.	In which of the following gates, the output i a. AND c. NOT	s 1, if and only if at least or b. OR d. NAND	e input is 1.
2.	Adding of 1001 and 0010 gives output a. 1011 c. 0	b. 1111 d. 1010	
3.	x+x'y= a. x c. x+y	b.Y d.x-y	
4.	Which of the following gates are added to the NAND gate a. NOT c. AND	ne input of OR gate to conv b. OR d. XOR	ert it to the
5.	Which of the following expression is not equ a. X NAND X c. X NAND 1	uivalent to 'X' b. X NOR X d. X NOR 1	
6.	A 1-to 4 line de-multiplexer is to be implem each word have? a. 1 c. 4	ented using a memory. Ho b.2 d.8	w many bits must
7.	The XNOR gate is equivalent to which gate a. OR c. NAND	followed by an inverter? b. AND d. XOR	
8.	One that is not postulate of Boolean Algebra a. Commuitive c. Assosiativity	a b. Duality d. Identity element	
9.	Which table shows logical state of digital cir a. Functional table c. Execution table	cuit for every b. Truth table d. ASCII table	

10. In of D excitation table flip flop next state is aa. Present statec. Input state	equal to b. Next state d. D state		(<u>PART-B : Descriptive</u>)	
11. Product of 1011 and 101 a. 110111 c. 111011	b. 110011 d. 111100	Ti	me: 2 hrs. 40 min. [Answer question no.1 & any four (4) from the rest]	Marks : 50
12. The sum of two n-bit binary numbers can bea. Seriallyc. Sequentially	done b. parallely d. Both a and b	1.	Describe AND, OR, NOT, NOR, NAND, XOR, XNOR gates with their truth tables and logic gates	10
 13. A combinational circuit that selects one from a. Encoder c. MUX 14. The minterms in a K-map are marked with a a. X c. 0 	n many inputs b. Decoder d. DEMUX b. Y d. 1	2.	Simplify using Boolean theorems i) $B=\overline{XY}+XY+X\overline{Y}+\overline{XY}$ ii) $Z=AB\overline{C}+A\overline{B}C+A\overline{B}C+A\overline{B}C$ iii) $Y=XY+\overline{XY}+XYZ$	3+3+4=10
 15. Full adder performs addition on a. 2 bits c. 4 bits 	b. 3 bits d. 5 bits	3.	Simplify using K-Map i) $F(X,Y,Z)=(2,3,4,5)$ ii) $W=\overline{XYZ}+\overline{XYZ}+\overline{XYZ}+\overline{XYZ}$	3+3+4=10
 16. Digital number is said to be of base or radix a. 8 c. 2 17. ASCII stands for a. African Standard Code for Information Interchange 	b. 10d. 0b. American Standard Code for Integer Interchange	4.	 ii) F(A,B,C,D)=(0,2,4,5,6,7,8,10,13,15) Find the answer for the following i) 0.1001-1.011 ii) 100111/100 iii) 11110x0.111 	2x5 =10
c. American Standard Code for Information Interchange	d. African Standard Code for Integer Interchange		 iv) Binary equivalent of (FA5.E)₁₆ v) Decimal equivalent of (68.77)₈ 	
18. A binary variable can take the valuesa. 0 onlyc. 1 and 2	b. 0 and 1 d. None of these	5.	What is Flip Flop. Explain JK, D and T Flip Flop with truth table and diagram.	3+3+2+2=10
19. (a+b+c)' = a. a'b'c' c. a b c	b. a'+b'+c' d. a+b+c	6.	Explain four different types shift registers. Design a negative edge triggered 2-bit ripple down counter. Give its logic diagram.	4+3+3=10
20. Odd parity of word can be conveniently tesa. OR gatec. NOR gate	ited by b. AND gate d. XOR gate	7.	Describe full subtractor with truth table and logic diagram. Draw the logic diagram of full adder using two half adder and gates. Define de-multiplexer. Write the function table for 8:1 multiplexer with 3data select lines and draw the logic circuit diagram.	6+4=10 2+4+4 =10

-- --- ---

[3]

= = *** = =