

- 7. a. Explain the algorithm for Floyd-Warshall's algorithm to find shortest 2+8=10path.
 - b. Apply Floyd-Warshall's all pairs algorithm to get the shortest path [Source vertex is 1] in the graph below:

- 8. Explain the following terms:
 - a. Asymptotic analysis of an algorithm.
 - b. Disadvantages of ordinary queue, how we overcome over it.
 - c. Insert 14, 17, 11, 7, 53, 4, 13 and 8 into an empty AVL tree.

__ *** _ _

REV-00 BCA/37/42

3+3+4=10

BACHELOR OF COMPUTER APPLICATION SECOND SEMESTER

DATA STRUCTURE THROUGH C

BCA-201

(Use separate answer scripts for Objective & Descriptive)

Duration: 3 hrs.	Full Marks: 70
[<u>PART-A: (</u> Time: 20 min.	<u>Objective</u>) Marks: 20
Choose the correct answer from the fol	lowing: 1 X 20=20
 Which of the following data structure is lin a. Tree c. Array 	ear data structure? b. Graph d. All of the above
 Two main measures for the efficiency of an a. Processor and Memory c. Time and Space 	algorithm are: b. Complexity and Capacity d. Data and Space
 3. Traversing a binary tree first right sub trees trees is: a. NLR c. LNR 	s and then root node and finally the left sub b. LRN d. None of the Above
 4. FIFO is used in a. Stack c. Linked List 	b. Queue d. Tree
 5. The following sequence of operation is per Push(1),push(2),pop,push(1),push(2),pop,popped out values are a. 2,2,1,1,2 c. 2,1,2,2,1 	formed on stack: pop,pop,push(2),pop. The sequence of b. 2,2,1,2,2 d. 2,1,2,2,2
 6. In linear search algorithm the worst case of a. The item is somewhere in the middle of the array c. The item is the last element in the array 	 ccurs when f b. The item is not in the array at all d. The item is the last element in the array or is not there at all
7. The situation when in a linked list START=a. Underflow	NULL is b. Overflow

8. The operation of processing each element in the list is known as

The openation of processing c	cuent elemente ne me not io know
a. Sorting	b. Inserting
c. Traversing	d. Merging

9. Any node in the in path from the root to the node is called

c. Saturated

2018/06

d. All above condition may occur

a. Successor Node	b. Internal Node	(<u>PART-B: Descriptive</u>)
c. Ancestor Node	a. Parent Node	Time: 2 hrs 40 min
10. State TRUE or FALSE		
i. A node is a parent if it has succes	sor nodes	[Annual section on 1.8 and four (4) from the most
ii. A node is child node if out degree	e is one	[Answer question no.1 & any four (4) from the rest]
a. True, False	b. False, True	
c. True, True	d. False, False	1. Write an algorithm with analysis steps for Linear Search. Write a 'C'
11. Finding the location of the element v	with a given value is	program to search an Element from 'N' elements using binary search
a. Traversal	b. Search	method.
c. Sort	d. Order	
12 The second with a Chine second also		2. a. What is Data Structure?
12. The complexity of binary search algo	b O(r log r)	b. Explain stack and queue operation.
a. $O(\log n)$	$d O(m^2)$	c. Find the result using stack operation: $(4+6)^*(10^*4)$ -7
c. O(n)	u. U(II-)	
13. Which notation is use to express the	lower bound of an algorithm's running time?	3. a. What is Pointer? Write a program to find sum of two user input no
a. O Notation	b. Ω notation	using pointer.
\mathbf{c} . $\boldsymbol{\Theta}$ Notation	d . μ notation	b. Define linked list. Explain the representation of singly linked list.
14. Which of the following algorithm de	esign technique is used in the Prim's shortest path	4 a What is algorithm analysis? Explain space and time complexity of
algorithm?		algorithm
a. Divide and Conquer	b. Greedy Method	b. Explain the criteria that you will keep in mind while choosing an
c. Dynamic Programming	d. Backtracking	appropriate algorithm to solve a particular problem.
15 The position in a quoue from which	an alamant is delated is called as	
a. Top	h Roar	5. a. Define tree. Explain the concept of complete binary tree and almost
c. Front	d. Mid	complete binary tree with example.
		b. Find inorder, preorder and postorder of the following tree:
16. Total number of nodes at the nth lev	rel of a binary tree can be given as	\mathbb{A}
a. 2 ⁿ	b.n	
c. 2 n +1	d. 2 ⁿ -1	
17. Degree of a leaf node is		∠ ^E X
a. 0	b. 1	
c. 2	d. n-1	
18 Postfix form of the infix expression:	a h/(a+d*a)	K B C
a ab-cd+o*/	h ab-cde+*/	\sim
c. abc/de-+*	d.abcde*+/-	
stude, de	- abcac · y	Ď È Þ
19. In breadth first search of graph, whi	ich of the following data structure is used?	
a. Stack	b. Queue	
c. Linked List	d. Tree	6. a. Define Graph? Explain Depth first and Breadth first Traversal
20. Which of the following data structur	re store the homogeneous data elements?	algorithm with a suitable example.
a. Pointers	b. List	b. Explain the steps involved in Prim's algorithm to find minimum
c. Records	d. Array	spanning tree of the following graph: (Assume "A" is the starting
		vertex)

-- --- --

Marks: 50

2+5+3=10

5+5=10

5+5=10

6+4=10

4+6=10

10