B.SC. ZOOLOGY
 SEMESTER- $3^{\text {RD }}$
 ORGANIC, INORGANIC AND PHYSICAL THEORY
 BSC-731

Duration: 3 Hrs.

Marks: 70
Part : A (Objective) $=\mathbf{2 0}$
Part : B (Descriptive) $=\mathbf{5 0}$
[PART-B: Descriptive]

Duration: 2 Hrs. 40 Mins

Marks: 50
[Answer question no. One (1) \& any four (4) from the rest]

1. i. Calculate the isoelectric point (pI) of the following amino acid pKa $=10.79$

ii. Why carboxylic acids can exist as dimers?
iii.Define chelates and discuss formation of chelates in living system.
iv. What happens when a drop of HCl is added to a mixture of sodium acetate and acetic acid?
2. i. What will be the products formed when D-Glucose is reacted with
a. NaBH_{4}
b. Bromine water
c. $\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}-\mathrm{C}_{6} \mathrm{H}_{5}$
ii. What is Wohl degradation method? Explain with examples.
iii. What is meant by mutarotation? Explain how D-glucose can undergo cyclization in their aqueous solutions. What will be the product formed when \square -D-Glucose is treated with excess of $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ in presence of pyridine?
3. i. What are the products formed in the following chemical reactions
$2+3+5=10$
a)

ii. What are carbohydrates and how they are classified? Explain with examples. iii. Define fat and oil. What is saponification of oil? Discuss about the chemical essence of the soap and the detergent.
4. i. Write the proper reagent of the following transformation

ii. Arrange according to the basicity (decreasing order).

iii. How to identify the primary, secondary and tertiary amines. Explain
iv. Write the proper reagents (i) \& (ii) and product ' A ' of the following reaction

5. i. Explain the factors affecting the magnitude of CFS. Define optical isomerism
and mention the conditions necessary to show optical isomerism.

ii. Discuss minerals and ores with examples. Define metallurgy.
6. i. Write down the nomenclature of the following compounds 2
(a) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \quad$ (b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
ii. Define atomic radius and express the relationship between single, double and 3 triple bonds.
iii. Describe ionization enthalpy. Define Electron affinity and discuss variation of electron affinity in a period
7. i. Explain the osmotic pressure method for the determination of molar mass of a 5 solute. What is the advantage of this method over other methods?
ii. What are abnormal molar mass and van't Hoff factor? Relate van't Hoff factor to the degree of dissociation and association?
8. i. Define buffer capacity. Derive Henderson-Hasselbalch equation.
ii. Define Kohlrausch's law. How it is used to determine the value of $\lambda_{\text {infinity }}$ of acetic acid?

B.SC. ZOOLOGY
 SEMESTER-3 ${ }^{\text {RD }}$
 ORGANIC, INORGANIC AND PHYSICAL THEORY
 BSC-731
 [PART-A: Objective]

Choose the correct answer from the following:

1. Which of the following has the smallest size
a. Al^{3+}
b. Al^{2+}
c. Al^{+}
d. Al
2. The outermost electronic configuration of the element with highest value of electron affinity is
a. $n s^{2} n p^{3}$
b. $\mathrm{ns}^{2} \mathrm{np}^{4}$
c. $\mathrm{ns}^{2} \mathrm{np}^{5}$
d. $n s^{2} n p^{6}$
3. Which of the following bonds will be most polar?
a. $\mathrm{N}-\mathrm{Cl}$
b. O-F
c. C-F
d. $\mathrm{N}-\mathrm{N}$
4. Which of the ions will contain maximum number of unpaired electron?
a. Fe^{3+}
b. Mn^{3+}
c. V^{2+}
d. Cu^{2+}
5. In forming Cr^{+}ion, the orbital from which electron will be first ejected is a. 4 s
b. 3d
c. 3 p
d. 4 p
6. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ are the example of
a. Conformation isomerism
b. Ionisation isomerism
c. Hydrate isomerism
d. Ligand isomerism
7. α-D-glucose and β-D-glucose can exist as
a. Enantiomers
b. Optical isomers
c. Anomers
d. Racemic mixtures
8. Which among the following is an aldopentose
a. Glyceraldehyde
b. Dihydroxy acetone
c. Erythrose
d. Arabinose
9. When propionic acid is treated with aqueous sodium bicarbonate, CO_{2} is liberated. The C of CO_{2} comes from
a. Methyl group
b. Carboxylic acid group
c. Methylene group
d. Bicarbonate group
10. $\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{O}-\mathrm{CO}-\mathrm{CH}_{3}$ is the structural formula of
a. Ethanamide
b. Ethyl acetate
c. Acetyl oxide
d. Acid anhydride
11. An example of a heterocyclic amine is
a.

c. NH_{2}
d.

12. An example of a basic amino-acid is
a. Lysine
b. Valine
c. Leucine
d. Glycine
13. The conversion of nitro group to amine group can be obtained by reduction with
a. LiAlH_{4}
b. NaBH_{4}
c. $\mathrm{NaBH}_{3} \mathrm{CN}$
d. $\mathrm{Zn}-\mathrm{HCl}$
14. The optimum reaction temperature for diazotization reaction is
a. $15-20{ }^{\circ} \mathrm{C}$
b. $10-15{ }^{\circ} \mathrm{C}$
c. $05-10{ }^{\circ} \mathrm{C}$
d. $0-5^{\circ} \mathrm{C}$
15. Colligative properties depend upon
a. Type of solute particles
b. The number of solute particles
c. Both the type and number of solute particles
d. None of the above
16. Which of the following is not a colligative property?
a. Osmotic pressure
b. Elevation of boiling point
c. Freezing point
d. Relative lowering of vapour pressure
17. A solution whose pH does not change on adding a small amount of acid or alkali is a. Acid solution
b. Basic solution
c. Buffer solution
d. Neutral solution
18. The hydrogen ion concentration of a neutral solution is
a. $1 \times 10^{-7} \mathrm{~g}$ ion/litre
b. $1 \times 10^{-11} \mathrm{~g}$ ion/litre
c. $2 \times 10^{-7} \mathrm{~g}$ ion/litre
d. $2 \times 10^{-14} \mathrm{~g}$ ion/litre
19. How Specific conductivity of an electrolytic solution does vary with dilution?
a. Increases
b. Decreases
c. Remains constant
d. No specific trend
20. A molal solution is one that contains one mole of a solute in
a. 1000 g of the solvent
b. 1 L of the solvent
c. 1 L of the solution
d. 22.4 L of the solution

UNIVERSITY OF SCIENCE \& TECHNOLOGY, MEGHALAYA
[PART (A) : OBJECTIVE]
Duration : 20 Minutes

Serial no. of the main Answer sheet

Course :

Semester : \qquad Roll No :

Enrollment No : \qquad Course code :

Course Title :

\qquad

Session : \qquad 2017-18 Date: \qquad
\qquad
Instructions / Guidelines

[^0]$>$ Students shall tick (\checkmark) the correct answer.
$>$ No marks shall be given for overwrite / erasing.
$>$ Students have to submit the Objective Part (Part-A) to the invigilator just after completion of the allotted time from the starting of examination.
Full Marks \quad Marks Obtained

[^0]: $>$ The paper contains twenty (20) / ten (10) questions.

