B.SC. CHEMISTRY SEMESTER-1ST PHYSICAL CHEMISTRY I **BSC-103**

Duration: 3 Hrs.

KEV-00

BSC/26/31

Part : A (Objective) = 20 Part : B (Descriptive) = 50

[PART-B : Descriptive]

Duration: 2 Hrs. 40 Mins.

[Answer question no. One (1) & any four (4) from the rest]

- 1. i. Discuss the statement: 'Classification of electrolytes into 'strong' and 'weak' is obsolete. It would be more appropriate to classify them as 'true' and 'potential' electrolytes.'
 - ii. Define the ionic product of water
 - iii. Write the postulates of kinetic theory of gases.
 - iv. Determine Miller indices of the crystal which cut the crystal axes at distance (3a, -4b, -2c)
- 2. i. Explain the Ostwald dilution law.
 - ii. Draw the representative plot of titration of: a strong acid with a strong base and a weak base with a strong acid. Identify the suitable indicator for these titrations.
 - iii. What is meant by the vapour pressure of a liquid? What is the effect of temperature on it?
- 3. Show that the exact concentration of $H_{\Xi}O^+$ in an aqueous solution of an acid HA can be computed from the expression

$$K_{a} = \frac{[H_{2}O^{+}]^{a} - [H_{2}O^{+}]K_{W}}{[H_{2}O^{+}][HA]_{o} - [H_{2}O^{+}]^{a} + K_{W}}$$

Under what conditions can the following expressions be used:

i.
$$K_{g} = \frac{[H_{2}O^{+}]^{2}}{[HA]_{o} - [H_{2}O^{+}]}$$

ii. $K_{g} = \frac{[H_{2}O^{+}]^{2}}{[HA]_{o}]}$

Marks: 70

Marks: 50

4+1+3+2=10

3+3+4=10

5+2.5+2.5=10

4.	i. Explain the phenomenon of hydrolysis. Show that $\mathbb{K}_{h} = \frac{\mathbb{K}_{w}}{\mathbb{K}_{a}}$, the symbols	1+4=5
	have their usual significance.ii. Explain why the pH of an aqueous solution of NaCl is 7 ?iii. Calculate the pH of a solution for which the hydrogen ion concentration is 0.005 g/litre.	3+2=5
5.	 i. What is an acid-base indicator? Give an example. How does its color change with H⁺ ion concentration of the solution? ii. How can you relate critical constants with van Der Waal's constant 	5+5=10
6.	From Maxwell distribution law derive the Most probable velocity and Average velocity.	. 10
7.	Determine total number of symmetry in a cubic system	10
8.	Derive van Der Wall's equation for real gas. Illustrate the behavior of this equation at low temperature and high temperature.	6+4=10

==***==