ODD SEMESTER EXAMINATION: 2020-21

Exam ID Number						
Course	Semester	_				
Paper Code	Paper Title	_				
Type of Exam:	(Regular/Back/Improvement)					

Important Instruction for students:

- 1. Student should write objective and descriptive answer on plain white paper.
- 2. Give page number in each page starting from 1st page.
- 3. After completion of examination, Scan all pages, convert into a single PDF, rename the file with Class Roll No. **(2019MBA15)** and upload to the Google classroom as attachment.
- 4. Exam timing from 10am 1pm (for morning shift).
- 5. Question Paper will be uploaded before 10 mins from the schedule time.
- 6. Additional 20 mins time will be given for scanning and uploading the single PDF file.
- 7. Student will be marked as ABSENT if failed to upload the PDF answer script due to any reason.

M.Sc. MATHEMATICS THIRD SEMESTER FUNCTIONAL ANALYSIS MSM-302

Duration : 3 hrs.

Full Marks: 70

(<u>PART-A : Objective</u>)						
Time : 20 min.						
Choose the correct answer from the follo	wing: 1X20=20					
 Which of the following is false? a. Every vector space is a metric space c. Every complete subspace M of a normed linear space N is not closed 	 b. Every normed linear space is a metric space. d. Rⁿ is a banach space w.r.t. any norm 					
2. Two normed linear space X and Y are said ta. One to one and ontoc. f is continuous	to behomeomorphic if the map $f: X \to Y$ is: b. f^{-1} is continuous d. All					
3. A linear map from a normed space X to Y isa. Boundedc. Continuous	s continuous iff T is? b. Convergent d. Complete					
 4. A linear map T: X → Y is continuous iff T is a. Any point x c. x = 0 	continuous at: b . <i>x</i> = 1 d . None					
 5. Which of the following is false? a. The set B(X, Y) of all bounded linear operators from X into Y is a subspace of the space L(X, Y) 	b . A finite dimensional normed space is not a banach space					
c. All norms on finite dimensional linear space are equivalent	d. None					
6. Which of the following statement is/are true.a. Integral operators are boundedc. Integral operators are unbounded	ue? b. Differential operators are bounded d. None					
7. Two norms $\ .\ _1 and \ .\ _2$ are said to be equ a. $m \ x\ _1 \le \ x\ _2 \le M \ x\ _1$ c. $m \ x\ _1 \ge \ x\ _2 \le M \ x\ _2$	ivalent if $\exists m, M > 0$ such that: b . $m \ x\ _1 \ge \ x\ _2 \le M \ x\ _2$ d . $m \ x\ _1 \le \ x\ _2 \ge M \ x\ _2$					
 8. Which of the following statement is true? a. A real inner product space is conjugate symmetric c. A complex inner product space is symmetric 	 b. A complex inner product space is linear in the second argument d. A real inner product space is linear in the first argument 					

9.	Which of the following is/are true for adjoin a. It doesn't preserve addition c. It preserve multiplication	t operator? b. It is linear d. It is conjugate linear
10.	A linear map T is said to be invertible if: a. T is continuous c. Both (a) and (b)	b . <i>T</i> ⁻¹ exists d . None
11.	Which of the following is true?a. An inner product space is not a normed linear spacec. The function space C[a,b] is not complete	b. Any finite dimensional normed linear space is a banach spaced. None
12.	The Riesz representation theorem is not true a. Complete c. Compact	in an inner product space which is: b. Not complete d. None
13.	 Which of the following statement is false? a. In a Hilbert space the norm induced by the inner product satisfies the parallelogram law. c. In <i>l</i>¹_nspace, wheren > 1 the parallelogram law is true 	 b. In l¹_n space, where n > 1 the parallelogram law not is true d. A complete inner product space is called Hilbert space
14.	 Which of the following is true? a. A closed unit sphere in a normed linear space is not convex c. If N is a normed linear space then . :N → R is continuous on N 	b. A open unit sphere in a normed linear space is not convexd. None
15.	Which of the following statements is true?a. Any two norms in a finite dimensional space is always equivalentc. Any two norms in an infinite dimensional space is always equivalent	 b. An inner product space is not a normed space d. None
16.	The principle of uniform boundedness is also a. Closed graph theorem c. Open mapping theorem	o known as: b. Riesz theorem d. Banach-steinhaus theorem
17.	Let M is the subset of a normed space N. Giv is bounded iff: a. d(M) is infinite c. d(M) is finite	ven that d(M)be the diameter of M. Then M b. d(M) is bounded d. d(M) is continuous
18.	Find the false statement. a. Hahn banach theorem is true for any norm space	b. The closed graph theorem gives notion of closedness of the graph of a LT between banach spaces
	c. A norm in an inner product space is defined by $ x ^3 = \sqrt{\langle x, x \rangle}$	d. A norm in an inner product space is defined by $ x = \sqrt{\langle x, x \rangle}$

- **19.** Which of the following is incorrect?
 - **a.** The Hahn- Banach theorem deals with extension of Linear operator
 - **c.** The Hahn- Banach theorem deals with extension of Linear functional
- **b.** The set of all eigen values of **T** is called the spectrum
- **d.** The discrete metric space is not a normed space

20. What is the spectrum of the idempotent operator T on a Banach space?

- **a.** {1,-1}
- **c.** {0,1}

- **b.** {0, -1}
- d. None

-- --- --

(<u>PART-B : Descriptive</u>)

Ti	Marks: 50			
[Answer question no.1 $\&$ any four (4) from the rest]				
1.	Write the statements of open mapping theorem and closed graph theorem. State and prove Riesz-representation theorem.	2+8=10		
2.	 a. Given that T is a linear operator such that T: X → Y, both X and Y are normed spaces. Prove that T⁻¹ exists and and is a bounded linear operator iff ∃aconstantK > 0 such that Tx _Y ≥ K x _Y, x ∈ X. b. Given , ₁ and , ₂ be two equivalent norms on a linear space X. Prove that (X, , ₁) is Banach iff (X, , ₂) is also Banach. 	5+5=10		
3.	 a. Let f be a linear functional on a normed space N. If f is continuous at x₀ ∈ N, prove that it must be continuous at every point of N. b. State Hahn-Banach theorem. If N is a normed linear space and x₀ is a non-zero vector in N, then there exists a functional f₀ in N* such that f₀(x₀) = x₀ and f₀ = 1. 	4+6=10		
4.	 a. Given M be a closed linear subspace of a normed linear space N and let x₀ be a vector not in M. If d is the distance from x₀ to M, then there exists a functional f₀ ∈ N* such that f₀(M) = 0, f₀(x₀) = d and f₀ = 1. b. Prove that in the Hilbert space l₂, the set {e₁, e₂ e_n} where e_n is the sequence with 1 in the nth place and 0's elsewhere is a complete orthonormal set. 	6+4=10		
5.	 a. The mappingφ: H → H* defined by φ(y) = f_y where f_y(x) =< x, y > for every x ∈ H. Prove that φ is an additive, one to one, onto isometry but not linear. b. If x and y are any two vectors in a Hilbert space H, then prove the polarization identity. 	5+5=10		
6.	 a. State and prove Banach-Steinhaus Theorem. b. Prove that an operator T on a finite dimensional Hilbert space H is singular if and only if there exists a non-zero vector x in H such that <i>Tx</i> = 0. 	6+4=10		
7.	 a. Define Hilbert space. Let <i>x</i> and <i>y</i> be two orthogonal vectors in a Hilbert space H, then prove that <i>x</i> + <i>y</i> ² = <i>x</i> - <i>y</i> ² = <i>x</i> ² + <i>y</i> ². Show that the space <i>l^p</i> with <i>p</i> ≠ 2 is not an inner product space. b. Derive Cauchy-Schwarz inequality from Bessel's inequality. 	3+3+4=10		

- 8. **a**. Define self adjoint operators. If A_1 and A_2 two are self adjoint operators on H, then prove that their product A_1A_2 is self adjoint if and only if they commute.
 - b. Let H be the given Hilbert space and T* be the adjoint of the operator T. Prove that T* is a bounded linear transformation and T determines T* uniquely.

= = *** = =