ODD SEMESTER EXAMINATION: 2020-21

Exam ID Number					
Course	Semester				
Paper Code	Paper Title				
Type of Exam:	(Regular/Back/Improvement)				

Important Instruction for students:

- 1. Student should write objective and descriptive answer on plain white paper.
- 2. Give page number in each page starting from 1st page.
- 3. After completion of examination, Scan all pages, convert into a single PDF, rename the file with Class Roll No. **(2019MBA15)** and upload to the Google classroom as attachment.
- 4. Exam timing from 10am 1pm (for morning shift).
- 5. Question Paper will be uploaded before 10 mins from the schedule time.
- 6. Additional 20 mins time will be given for scanning and uploading the single PDF file.
- 7. Student will be marked as ABSENT if failed to upload the PDF answer script due to any reason.

c. $\omega \tau >> 1$

M.Sc. PHYSICS THIRD SEMESTER **CONDENSED MATTER PHYSICS-I** MSP-304 A

Dt	uration : 3 hrs.	Full Marks: 70				
	(<u>PART-A :</u>	<u>Objective</u>)				
Tiı	Time : 20 min. Marks : 20					
Ch	Choose the correct answer from the following: 1X20=20					
1.	Electronic density of state at the Fermi leve a. Zero c. Infinite	el in a metal is: b. Finite d. None				
2.	 The effective mass of charge carriers in sol 1. The topology of electronic band structure 2. Dispersion relation 3. Crystal size 4. Electronic density of states a. Only 1 c. 1,2 and 3 					
3.	Electronic band formation is due to the mo a. Constant potential c. Periodic potential	tion of electrons in a, b. Zero potential d. None				
4.	In 1D lattice, the second Brillouin zone is d a. $-\pi/a$ to $+\pi/a$ c. $-\pi/a$ to $-2\pi/a$ & $+\pi/a$ to $+2\pi/a$	lefined in the region: b. $-2\pi/a$ to $+2\pi/a$ d. $-3\pi/a$ to $-2\pi/a$ & $+2\pi/a$ to $+3\pi/a$				
5.	If $E_{H'} j_x$ and B_z are the Hall field, current de Hall constant(R_H) is given by: a . $R_H = (E_H/J_x)/B_z$ c . $R_H = B_z/(E_H/J_x)$	ensity and magnetic field strength, then the b . R _H = (J _x /E _H)/B _z d . None				
6.	Diamagnetic material possess: a. Induced dipole moment c. No permanent magnetic dipoles	b. Permanent dipole moment d. None				
7.	Magnetic susceptibility (χ) of the magnetic meaning) a. X = (μ _r - 1) c. X = (μ - μ_0)/ μ_0	 material is given by: (symbols have their usual b. X = M/H d. All are correct 				
8.	The basic condition for cyclotron resonance a . $\omega \tau \ll 1$ c . $\omega \tau \gg 1$	e is: (symbols have their usual meaning) b . ω τ = 1 d . None				

 9. For the Tight Binding model, consider the for 1. The individual atomic wave functions are 2. Method is appropriate to describe the bar type crystals. 3. Method is appropriate to describe metal-ta. Only 1 c. 1 and 2 	e independent. ad structure of diamond-like and inert gas
10. If the flatness of the electronic band increasea. Decreasedc. Remains same	ed then the effective mass will be: b. Increased d. None
11. A Josephson junction consists of a/ana. Insulator-superconductor-insulatorc. Normal-insulator-superconductor	junction. b. Superconductor-insulator- superconductor d. Normal- insulator-superconductor
 12. At which of the following temperatures, trans. a. 2.17 K c. 5.17 K 	nsition from He II to He I phase happens? b. 2.57 K d. 4.2 K
 13. Which one of the following is the value of quality a. 2.0 X 10⁻¹⁷ Webers c. 2.0 X 10⁻¹⁶ Webers 	uantum of magnetic flux? b. 2.0 X 10 ⁻¹⁴ Webers d. 2.0 X 10 ⁻¹⁵ Webers
14. Which of the following sets gives the correct a. 1, 0, ½, 3 c. -1, 0, ½, 3	t values of exponential inequalities? b. -1, 0, -1/2, 3 d. 1, 0, -1/2, 3
15. Latent heat is involved inphase traa. He I to He IIc. Ferromagnetic to paramagnetic	nsition. b. Water to ice d. Normal to superconductor
16. The temperature at which conductivity of aa. Absolute temperaturec. Mean temperature	material becomes infinite is called: b. Crystallization temperature d. Critical temperature
17. Cooper pairs are made ofcombina. Electron- electronc. Electron- proton	nation. b. Electron- photon d. Electron- phonon
 18. Which one of the following is the correct exp symbols having usual meaning? a. U m ¹/₂ 	pression for London penetration depth, with b. μe^{2}

a.
$$\lambda = (\frac{\mu_0 m}{n_s e^2})^{\frac{1}{2}}$$

b. $\lambda = (\frac{\mu_0 e^2}{n_s m})^{\frac{1}{2}}$
c. $\lambda = (\frac{m}{\mu_0 n_s e^2})^{\frac{1}{2}}$
d. $\lambda = (\frac{n_s e^2}{\mu_0 m})^{\frac{1}{2}}$

19. The susceptibility of a superconductor is......

 a. Negative
 b. Positive

 c. Zero
 d. Not predictable

- **20.** If a photon does not lose energy on interaction with an electron, which kind of scattering is involved?
 - a. Compton
 - **c.** Maxwell

b. Rayleigh **d.** Rutherford

-- --- --

(<u>PART-B : Descriptive</u>)

Time : 2 hrs. 40 min.		
	[Answer question no.1 & any four (4) from the rest]	
1.	Obtain the dispersion relation of optical constants from Maxwell's equations.	10
2.	a. Explain briefly DC and AC Josephson effects.b. Discuss thermodynamics of superconductors with an appropriate figure.	4+6=10
3.	a. Discuss Ising model of ferromagnetic to paramagnetic phase transition.b. Explain superfluid phase transition with an appropriate figure.	6+4=10
4.	a. Discuss isotope effect of superconductors.b. Explain optical transitions in direct and indirect bandgap semiconductors with momentum and energy conservation principles.	2+8=10
5.	 a. Derive the expression for effective mass of electron in solid. b. Write a short notes on the following: Quantum Hall effective de Haas-van Alphen effect 	5+5=10
6.	Explain Tight Binding method (TB)? Derive the dispersion relation using TB method (you may consider graphene case).	3+7=10
7.	Derive the expression for energy versus wave vector relation by solving the Schrodinger equation using Kronig-Penney model.	10
8.	a. What are first and second order phase transitions? Explain with examples.b. Obtain expressions for Ehrenfest equations from thermodynamic considerations.	3+7=10

= = *** = =