ODD SEMESTER EXAMINATION: 2020-21

Exam ID Number	
Course	Semester
Paper Code	Paper Title
Type of Exam:	(Regular/Back/Improvement)

Important Instruction for students:

- 1. Student should write objective and descriptive answer on plain white paper.
- 2. Give page number in each page starting from 1st page.
- 3. After completion of examination, Scan all pages, convert into a single PDF, rename the file with Class Roll No. **(2019MBA15)** and upload to the Google classroom as attachment.
- 4. Exam timing from 10am 1pm (for morning shift).
- 5. Question Paper will be uploaded before 10 mins from the schedule time.
- 6. Additional 20 mins time will be given for scanning and uploading the single PDF file.
- 7. Student will be marked as ABSENT if failed to upload the PDF answer script due to any reason.

M.Sc. MATHEMATICS THIRD SEMESTER NUMBER THEORY MSM-301

Duration: 3 hrs. Full Marks: 70 [PART-A : Objective] Time: 20 min. Marks: 20 1X20 = 20Choose the correct answer from the following: 1. Which of the following(s) is/are not perfect number? a. 496 **b**. 8128 c. Both (a) and (b) **d.** None of these 2. The remainder of 4(29!) + 5! divided by 31 is: **a.** 00 **b**.01 **c.**02 d. None of these 3. The value of $\tau(180)$ and $\sigma(180)$ are respectively: a. 17 & 546 b. 546 & 17 c. 546 & 18 **d.** 18 & 546 4. If *a* is a quadratic non-residue modulo an odd prime *p* then: b. $a^{\frac{p-1}{2}} \equiv -1 \pmod{p}$ a. $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$ c. $a^{\frac{p-1}{2}} \equiv \pm 1 \pmod{p}$ **d.** All of these 5. If $2^k - 1$ is prime then: a. k is composite **b.** *k* is prime **d.** Such *k* does not exist **c.** k is any integer 6. Which of the following statement(s) is/are necessarily true? **b**. $n \mid \phi(a^n - 1)$ for all positive integers $a \otimes n$ **a.** $\phi(n) \mid n$ for all positive integers n c. $n \mid \phi(a^n - 1)$ for all positive integers **d.** $a \mid \phi(a^n - 1)$ for all positive integers $a \otimes n$ a & n such that gcd(a, n) = 1such that gcd(a, n) = 17. The continued fraction of $\frac{118}{202}$ is: a. [0; 2,1,1,3,5,3] b. [0,; 2, 1, 3, 5, 3] c. [2;1,3,5,3] d. [2; 1,1,3,5,3] 8. The congruence $6x \equiv 1 \pmod{9}$ has: b. At least 3 solution a. 3 solutions d. No solution c. Exactly 3 solutions 9. If $\frac{p}{a}$ is convergent of \sqrt{d} then: a. $\left|\sqrt{d} - \frac{p}{q}\right| < \frac{1}{p^2}$ b. $\left|\sqrt{d} - \frac{p}{a}\right| > \frac{1}{p^2}$

$$\mathbf{c} \cdot \left| \sqrt{d} - \frac{p}{q} \right| < \frac{1}{q^2}$$

$$\frac{d}{\sqrt{d}} - \frac{p}{q} > \frac{1}{q^2}$$

10. The congruence x² ≡ a (mod 32) has a solution for which of the value of a?
a. 9
b. 13
c. 15
d. None of these

- 11. Find the last two digits of the number 3²⁵⁶.
 a. 20
 c. 22
- b. 21d. None of these
- **12.** For any odd prime $p, \sum_{a=1}^{p-1} \left(\frac{a}{p}\right)$ is equal to:

a. -1	b. 0
c. 1	d. Given information is not sufficient

- 13. The number of primitive roots of 343 is:
 a. 294
 c. 84
- **14.** Suppose ϕ and ϕ denotes Golden ratio and Golden ratio conjugate respectively. The nth Fibonacci number F_n is equal to:

b. 342

d. 42

a.
$$F_n = \frac{\phi^n - \varphi^n}{\sqrt{5}}$$

c.
$$F_n = \frac{(\phi)^n + (-\varphi)^n}{\sqrt{5}}$$

^{b.}
$$F_n = \frac{\phi^n - (-\phi)^n}{\sqrt{5}}$$

^{d.} $F_n = \frac{(\phi)^n + \phi^n}{\sqrt{5}}$

15. For any prime p > 5, gcd(F_{p-1}, F_{p+1}) is:
 a. Always 1
 c. Not always 1

16. The sequence C₁, C₃, C₅, ··· is:
a. Decreasing sequence
c. Increasing sequence

b. Any positive integer**d.** None of these

 $\mathbf{b}. p_n \le p_1 p_2 \cdots p_{n-1}$

d. None of these

b. Strictly decreasing sequence **d**. Strictly increasing sequence

 $n \ge 2$

17. If p_n denotes the nth prime number then which of the following is/are true?

a. $p_n \le p_1 p_2 \cdots p_{n-1} - 1$	$n \ge 2$
c. $p_n \le p_1 p_2 \cdots p_{n-1} + 1$	$n \ge 2$

18. Which of the following number(s) has no primitive root?
a. 243
b. 250
c. 256
d. None of these

19. The value of $F_{n+2}^2 - F_n^2$ is:

 a. F_{2n-1}
b. F_{2n}
c. F_{2n+1}
d. F_{2n+2}

20. If *n* is a perfect number then:

 $\sum_{d \mid n_d^{\frac{1}{d}}}$ is:

a.1

c. A positive integer other than 1 and 2

d. A real number other than 1 and 2

-- --- --

b.2

(<u>PART-B : Descriptive</u>)

Ti	me : 2 hrs. 40 min.	Marks : 50
[Answer question no.1 & any four (4) from the rest]		
1.	 a) Find all the solutions of the following system of linear congruences in the interval [801,1000] x ≡ 5(mod 6) x ≡ 4(mod 11) x ≡ 3(mod 7) 	4+4+2=10
	b) Determine all solutions in the positive integers of $54x + 21y = 906$.	
	c) For an odd prime p , prove that the congruence $2x^2 + 1 \equiv 0 \pmod{p}$ has a solution if and only if $p \equiv 1 \text{ or } 3 \pmod{8}$.	
2.	 a) Solve the following linear congruence 140x ≡ 133 (mod 301). b) What is the remainder when the following sum is divisible by 4? 1⁵ + 2⁵ + 3⁵ + + 99⁵ + 100⁵ c) Prove that 17 (11¹⁰⁴ + 1). 	4+3+3=10
3.	a) Prove that $-\phi(2^n - 1)$ is a multiple of <i>n</i> for any $n > 1$. b) Verify that 3 is a primitive root of F_n , $n > 1$. c) Prove that $-2^{25} - 1$ is divisible by 127.	5+3+2=10
4.	 a) Find the solution of the following Pell's equation x² - 7y² = 1 b) Show that the sum of the squares of the first <i>n</i> Fibonacci numbers is F₁² + F₂² + F₃² + … + F_n² = F_nF_{n+1} 	5+5=10
5.	 a) Evaluate [1; 1, 1,]. b) Solve the following congruence 3x⁴ ≡ 5(mod 11) 	5+5=10
6.	 a) State and Prove Euler's criterion. b) Determine whether the following congruence has solution or not: x² ≡ -46 (mod 17) c) Find the value of (⁻²³/₅₉). 	5+3+2=10
7.	 a) If p is a prime number and d (p - 1), then the congruence x^d - 1 ≡ 0 (mod p) has exactly d solutions. b) Prove that -The polynomial f(n) = n² + n + 41 is composite. c) Prove that - If p_n is the nth prime number, then p_n ≤ 2^{2ⁿ⁻¹}. 	5+2+3=10
8.	a) Prove that $L_n = F_{n-1} + F_{n+1}$. b) Prove that - If p is an odd prime number and $k \ge 1$, then there exists a primitive root for p^k . c) If p is an odd prime, then prove that $\left(\frac{-2}{p}\right) = \begin{cases} -1, & \text{if } p \equiv 5 \pmod{8} \text{ or } p \equiv 7 \pmod{8} \\ 1, & \text{if } p \equiv 1 \pmod{8} \text{ or } p \equiv 3 \pmod{8} \\ = *** = = \end{cases}$	4+4+2=10