Exam ID Number \qquad
Course \qquad Semester \qquad
Paper Code \qquad Paper Title \qquad
Type of Exam: \qquad (Regular/Back/Improvement)

Important Instruction for students:

1. Student should write objective and descriptive answer on plain white paper.
2. Give page number in each page starting from $1^{\text {st }}$ page.
3. After completion of examination, Scan all pages, convert into a single PDF, rename the file with Class Roll No. (2019MBA15) and upload to the Google classroom as attachment.
4. Exam timing from $10 \mathrm{am}-1 \mathrm{pm}$ (for morning shift).
5. Question Paper will be uploaded before 10 mins from the schedule time.
6. Additional 20 mins time will be given for scanning and uploading the single PDF file.
7. Student will be marked as ABSENT if failed to upload the PDF answer script due to any reason.

B.Sc. PHYSICS
 THIRD SEMESTER
 MATHEMATICAL PHYSICS-II
 BSP-301

Duration : 3 hrs.
Full Marks : 70

(PART-A: Objective $)$

Time : 20 min .
Marks : 20

Choose the correct answer from the following:
$1 X 20=20$

1. In a square matrix, each diagonal element is zero and $a_{i j}=-a_{j i}$. Then its matrix will be:
a. Symmetric
b. Skew-symmetric
c. Hermitian
d. Skew-hermitian
2. The trace of a 3×3 matrix is 2 . Two of its eigen values are 1 and 2 . The third eigen value is:
a. -1
b. 0
c. 2
d. 1
3.

One of the eigen value of the matrix $A=\left[\begin{array}{lll}2 & 3 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$ is 5, then the other two eigen values are:
a. 0 and 0
b. 1 and 1
c. 0 and 1
d. 1 and -1
4. The polynomial $2 x^{2}+x+3$ in terms of Legendre's polynomial is:
a. $\frac{1}{3}\left[4 P_{2}-3 P_{1}+11 P_{0}\right]$
b. $\frac{1}{3}\left[4 P_{2}+3 P_{1}-11 P_{0}\right]$
c. $\frac{1}{3}\left[4 P_{2}+3 P_{1}+11 P_{0}\right]$
d. $\frac{1}{3}\left[4 P_{2}-3 P_{1}-11 P_{0}\right]$
5. The generating function of Legendre's polynomial $P_{n}(x)$ is:
a. $\sqrt{1-2 x u+u^{2}}$
b. $\frac{1}{\sqrt{1-2 x u+u^{2}}}$
c. $\left(x^{2}-1\right)^{n}$
d.
$\frac{1}{1-2 x u-u^{2}}$
6. The orthogonal property of Legendre's polynomial is:
a. $\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=1$, if $m \neq n$,
b. $\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=0$, if $m \neq n$
c. $\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\infty$, if $m \neq n$
d. None of these
7. If A and B are the matrices of same order such that $A B=A$ and $B A=B$, then A and B are
a. Nilpotent
b. Idempotent
c. Singular
d. Hermitian
8. If $P_{n}(x)$ and $Q_{n}(x)$ are two independent solution of Legendre equation then the general solution is:
a. $y=A P_{n}(x)+B Q_{n}(x)$,
b. $y=A P_{n}^{2}(x)+B Q_{n}(x)$
c. $y=A P_{n}^{2}(x)+B Q_{n}^{2}(x)$
d. None of these
9. If $x=0$ is a regular singular point of the differential equation $\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0$ and m_{1}, m_{2} are real and different roots then:
a. $y=c_{1}(y)_{m_{1}}+c_{2}(y)_{m_{2}}$
b. $y=c_{1}(y)_{m_{1}}+c_{2}\left(\frac{d y}{d m}\right)_{m_{1}}$
c. $y=c_{1}(y)_{m_{1}}$
d. $y=c_{1}(y)_{m_{1}}+c_{2}(y)_{m_{1}}$
10.

The solution of the partial differential equation $\frac{\partial^{2} z}{\partial y^{2}}=\sin (x y)$
a. $z=-x^{-2} \sin (x y)+x f(x)+g(x)$
b. $z=-x^{2} \sin (x y)-y f(x)+g(x)$
c. $z=-y^{2} \sin (x y)+y f(x)+g(x)$
d. $z=-x^{2} \sin (x y)+y f(x)+g(x)$
11. A partial differential equation has:
a. One independent variable
b. Two or more independent variables
c. More than one dependent variable
d. Equal number of dependent and independent variables
12.

The matrix A is defined as $A=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 2 & -3 & 0 \\ 1 & 4 & 2\end{array}\right]$. The eigenvalues of A^{2} is:
a. $-1,-9,-4$
b. 1, 9, 4
c. $-1,-3,2$
d. None of these
13. How many constants are required to make a $2^{\text {nd }}$ order partial differential equation?
a. 3
b. 2
c. 1
d. 0
14.

Complete solution of the partial differential equation $\frac{\partial^{2} z}{\partial x^{2}}-4 \frac{\partial^{2} z}{\partial x \partial y}+4 \frac{\partial^{2} z}{\partial y^{2}}=0$ is:
a. $z=f_{1}(y+2 x)+x f_{2}(y+2 x)$
b. $z=f_{1}(2 y+x)+x f_{2}(2 y+x)$
c. $z=f_{1}(y+x+2)+x f_{2}(y+x+2)$
d. $z=f_{1}(y-2 x)+x f_{2}(y-2 x)$
15. Which of the following is Lagrange's linear equation?
a. $P p+Q q=R$
b. $P p+Q q \neq R$
c. $P p+Q q=0$
d. None of these
16. What is the value of $\beta(z, 1)$?
a. 1
z
b. $\frac{1}{z+1}$
c.
$\frac{1}{z(z+1)}$
d. $\frac{1}{z-1}$
17.
$\frac{\Gamma(-1 / 2)}{\Gamma(1 / 2)}$
a. 2
b. -2
c. 1
d. $-\frac{1}{2}$
18.

If $1.3 .5 \ldots \ldots .(2 n-1)=\frac{2^{n}}{\sqrt{\pi}} \Gamma(p)$, then p is:
a. $n+\frac{2}{3}$
b. $n+\frac{1}{2}$
c. $n+\frac{1}{3}$
d. n
$\frac{n}{2}-1$
19.

$$
\int_{0}^{\infty} e^{-t^{2}} d t=?
$$

a. $\sqrt{\pi}$
b. $\frac{\sqrt{\pi}}{2}$
c. π
d. 0
20. The error function $\operatorname{erf}(x)$ is written as:
a. $\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$
b. $\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t$
c. $\frac{\sqrt{\pi}}{2} \int_{0}^{x} e^{-t^{2}} d t$
d. $\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-x^{2}} d x$

($\underline{\underline{\text { PART-B : Descriptive }}}$)

Time : 2 hrs. 40 min .

[Answer question no. 1 \& any four (4) from the rest]

1.

Solve the Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ in a rectangle in the $x y-$
plane with $u(x, 0)=0, u(x, b)=0, u(0, y)$ and
$u(a, y)=f(y)$ parallel to y-axis.
2. Prove that the product of two matrices
$\left[\begin{array}{cc}\cos ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]$ and $\left[\begin{array}{cc}\cos ^{2} \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin ^{2} \phi\end{array}\right]$ is zero
then θ and ϕ differ by an odd multiple of $\frac{\pi}{2}$.
Find the inverse of following matrix by elementary row transformation
$A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$
3. Evaluate Beta function in terms of gamma function.

Prove that 1.3.5... $(2 n-1)=\frac{2^{n} \sqrt{n+\frac{1}{2}}}{\sqrt{\pi}}$
Show that $\beta(l, m)=\beta(m, l)$.
4.
i. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{p} \theta \cos ^{q} \theta d \theta$
ii. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{m-1}(2 \theta) d \theta$
5. i. Using elementary transformations, reduce the following matrix to normal form and find its rank

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2 \\
4 & 3 & 1 & 2
\end{array}\right]
$$

ii. Verify whether the matrix $A=\frac{1}{3}\left[\begin{array}{ccc}2 & 2 & 1 \\ 2 & -1 & 2 \\ -1 & 2 & 2\end{array}\right]_{\text {is orthogonal. }}$
6. Obtain the general solution of one dimensional wave equation by using the method of separation of variables.
Solve
$\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial x \partial y}=\cos x \cos 2 y$
7.
i. Using Frobenius methods solve $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-1\right) y=0$.
ii. Solve the equation $\frac{d^{2} y}{d x^{2}}+x^{2} y=0$
8.

Prove that $\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=0$, if $m \neq n$

$$
P_{n}\left(-\frac{1}{2}\right)=P_{0}\left(-\frac{1}{2}\right) P_{2 n}\left(\frac{1}{2}\right)+P_{1}\left(-\frac{1}{2}\right) P_{2 n-1}\left(\frac{1}{2}\right)+\ldots+
$$

Prove that

$$
P_{2 n}\left(-\frac{1}{2}\right) P_{0}\left(\frac{1}{2}\right)
$$

Draw the graph for Legendre's polynomial $P_{0}, P_{1}, P_{2}, P_{3}, P_{4}$.

$$
==* * *==
$$

