Write the following information in the first page of Answer Script before starting answer

ODD SEMESTER EXAMINATION: 2020-21

Exam ID Number					
Course	Semester				
Paper Code	Paper Title				
Type of Exam:	(Regular/Back/Improvement)				

Important Instruction for students:

- 1. Student should write objective and descriptive answer on plain white paper.
- 2. Give page number in each page starting from 1st page.
- 3. After completion of examination, Scan all pages, convert into a single PDF, rename the file with Class Roll No. **(2019MBA15)** and upload to the Google classroom as attachment.
- 4. Exam timing from 10am 1pm (for morning shift).
- 5. Question Paper will be uploaded before 10 mins from the schedule time.
- 6. Additional 20 mins time will be given for scanning and uploading the single PDF file.
- 7. Student will be marked as ABSENT if failed to upload the PDF answer script due to any reason.

Duration: 3 hrs.

B.Sc. CHEMISTRY FIFTH SEMESTER PHYSICAL CHEMISTRY-V BSC-502

(<u>PART-A: Objective</u>)

Tiı	ne : 20 min.	Marks: 20
Ch	oose the correct answer from the follow	ving: 1X20=20
1.	What formula best describes the emission sp a. Raleigh-Jeans formula c. Planck's formula	ectrum of a blackbody? b. Wein's formula d. DeBroglie's formula
2.	The square of the magnitude of the wave function a . Current density c . Probability	nction is called b. Probability density d. Zero
3.	The operator ∇^2 is called operator. a. Hamiltonian c. Poisson	b. Laplacian d. Vector
4.	Quantum mechanical operators are: a. Square operators c. Hermitian operators	b. Square root operators d. None
5.	The eigen function of a rigid rotor are: a. Hermite polynomials c. Spherical harmonics	b. Legendre polynomials d. Tchebyshev polynomials
6.	The value of the commuter [x, d/dx] is: a. 1 c. 2	b. -1 d. 0
7.	Which one of the following is true for angulaa. It is a vectorc. It is quantized	ar momentum of a particle on a ring? b. It is resultant of cross product of linear momentum and radius d. All of the above
8.	Which of the following is true with respect t a. 1s < 2s = 2p < 3s = 3p = 3d < 4s c. 1s < 2s < 2p < 3s < 3p < 3d < 4s	o energy of subshells in hydrogenic atoms? b. 1s < 2s < 2p < 3s < 3p < 4s < 3d d. None of the above
9.	In photochemical reactions, the absorption of a . Primary processes only c . Either primary or secondary process	of light takes place in: b. Secondary processes only d. Both primary and secondary processes
10.	Photochemical reaction takes place by the ab a. Visible and ultraviolet radiations c. Heat energy	psorption of: b. Infrared radiations d. None of these

Full Marks: 70

USTM/COE/R-01

 11. The wavelength of ultraviolet and visible reg a. Less than 2000 Å c. 2000° to 8000 Å 	ions of electromagnetic spectrum is: b. More than 8000 Å d. None of these
12. A species which can both absorb and transferreactant molecule is called:	r radiant energy for activation of the
a. A photosensitizer c. A photochemical substance	b. An ioniser d. Radioactive substance
13.stops as soon as the incident radiata. Phosphorescencec. Chemiluminescence	tion is cut off. b. Fluorescence d. None of these
14. Which of the following has highest frequencya. Microwavec. Infra-Red	7? b. UV-Visible d. X-ray
 15. The unit of frequency is: a. cm⁻¹ c. m⁻¹ 	b. sec ⁻¹ d. m sec ⁻¹
16. Which of the following is true for prolate symplet a. I $\perp > I_{\parallel}$ c. I $\perp = I_{\parallel}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
17. Choose the correct answer for Raman spectra a. $\Delta J = 0$, +1 etc. c. $\Delta J = +2$	b. $\Delta J = +1$ d. $\Delta J = +1, +2$ etc.
18. With the increase in vibrational quantum nugap will be:a. Decreasedc. Remain same	mber of an anharmonic oscillator, the energy b. Increased d. None of these
19. The microwave spectrum of a molecule yielda. Prolate symmetric topc. Oblate symmetric top	s three rotational constants. The molecule is: b . Spherically top d . Assymetric top
20. For rotational quantum number J = 1, the rota. 0c. 6B	ational energy will be: b. 2B d. 12B

-- --- --

(<u>PART-B : Descriptive</u>)

Time : 2 hrs. 40 min.		
	[Answer question no.1 & any four (4) from the rest]	
1.	 a. Write the properties of the wavefunctions for particle in 1D box. b. Find a state (n1, n2) for a particle in a rectangular box with sides of length L1 = L and L2 = 2L that is accidentally degenerate with the state (4,4). 	5 3
	c. Wavefunction of a harmonic oscillator is combination of which two types of functions?	2
2.	 a. What is Ritz Combination Principle? b. β-Carotene is a linear polyene in which 10 single and 11 double bonds alternate along a chain of 22 carbon atoms. If we take C-C bond length to be about 140pm, then the length L of the molecule box of β-Carotene is L = 2.94 nm. Estimate the wavelength of the light absorbed by this molecule from its ground state to the next higher excited state. c. Elaborately derive how to separate internal and external motion in 	2 3 5
	Schrodinger equation of hydrogen atom.	
3.	 a. Distinguish between photochemical and thermal reactions. b. A monochromatic light is incident on solution of 0.05 molar concentration of an absorbing substance. The intensity of the radiation is reduced to one-fourth of the initial value after passing through 10 cm length of the solution. Calculate the molar extinction coefficient of the substance. 	5 5
4.	 a. Define quantum yield. b. Explain fluorescence and phosphorescence. c. Derive the Lambert-Beer law. 	2 3 5
5.	a. Depending on moment of inertia, how many top molecules were observed? Explain with suitable examples	5
	b. Define singlet and triplet statesc. Why does electronic spectroscopy is also known as UV-visible spectroscopy?	3 2
6.	 a. State and Explain Franck-Condon principle. b. Determine the moment of between two molecules separated by distance "r" having masses m₁ and m₂. 	5 5
7.	a. Sketch the energy level for anharmonic oscillator. Under what condition the frequency of harmonic oscillator become equal to that of anharmonic oscillator.	4
	b. Determine the energy for fundamental overtone, first overtone and hot band.	6

8. Write some of the characteristic of electromagnetic radiation. What happen when an electromagnetic radiation interact with matter. Explain with suitable example.

= = *** = =