Write the following information in the first page of Answer Script before starting answer

ODD SEMESTER EXAMINATION: 2020-21

Exam ID Number	
Course	Semester
Paper Code	Paper Title
Type of Exam:	(Regular/Back/Improvement)

Important Instruction for students:

- 1. Student should write objective and descriptive answer on plain white paper.
- 2. Give page number in each page starting from 1st page.
- 3. After completion of examination, Scan all pages, convert into a single PDF, rename the file with Class Roll No. **(2019MBA15)** and upload to the Google classroom as attachment.
- 4. Exam timing from 10am 1pm (for morning shift).
- 5. Question Paper will be uploaded before 10 mins from the schedule time.
- 6. Additional 20 mins time will be given for scanning and uploading the single PDF file.
- 7. Student will be marked as ABSENT if failed to upload the PDF answer script due to any reason.

B.PHARM. THIRD SEMESTER PHYSICAL PHARMACEUTICS-I BP-302 T

Duration: 3 hrs. Full Marks: 75 [PART-A : Objective] Time: 20 min. Marks: 20 1X20 = 20Choose the correct answer from the following: 1. In which state of matter, the particles are farthest? a. Solid **b.** Liquid c. Gas d. All of the above 2. The change of state from solid directly to gas is known as: a. Fusion **b.** Boiling c. Sublimation d. Evaporation is a solution that contains maximum amount of solute at a definite 3. temperature. a. Unsaturated solution b. Saturated Solution **c.** Subsaturated solution **d**. None of the above 4. __solution contains more of the solute than it would normally contain in a saturated solution at a definite temperature. **b**. Saturated solution a. Unsaturated solution **d**. None of the above c. Supersaturated solution 5. 10-30 parts of solvent is required for 1 part of solute in case of: a. Freely soluble **b.** Sparingly soluble c. Soluble d. Slightly soluble 6. The solubility of substance depends on: a. Solvent b. Temperature c. Pressure **d**. All of the above 7. The relationship between pH, pKa and extent of ionization is described by: a. Charle's law b. Boyle's Law c. Henderson Hasselbach equation d. None of the above 8. As a light wave enters from one medium to another, the bending of the light wave is due to the phenomenon: a. Partition coefficient b. Optical Rotation c. Refraction d. Reflection 9. The temperature above which a gas cannot be liquefied, is known as: a. Melting point **b.** Critical temperature c. Boiling point **d**. None of the above

10. The phenomenon in which the compound exist in more than one crystalline or amorphous form is known as:				
a. Isotropism	b. Anisotropism			
c. Polymorphism	d. None of the above			
11. Cryoscopic method for adjusting tonicity and	d pH comes under:			
a. Class I method	b. Class II method			
c. Class III method	d. Class IV method			
2. The solution having an osmotic pressure greater than that of 0.9% w/v sodium chlori is called:				
a. Hypertonic solution	b. Hypotonic solution			
c. Isotonic solution	d. None of the above			
13. The pH of Pharmaceutical buffer system can	be calculated by using:			
a. pH Partition theory	b. Michaelis menten equation			
c. Henderson Hasselbach equation	d. Noyes Whitney equation			
14. Surfactants are substances having:				
a. Hydrophilic part only	b. Hydrophobic part only			
c. Both Hydrophilic and hydrophobic	d. None of the above			
part				
15. HLB value of detergents is:				
a. 9- 12	b. 13-16			
c. 6-9	d. 14-16			
16. Interfacial tension are invariably	surface tension.			
a. Less than	b. Equal to			
c. More than	d. Double than			
17. Interfacial tension is applied on:				
a. Miscible Liquids	b. Immiscible liquids			
c. Both a and b	d. None of the above			
18. Adhesive force $>$ cohesive force, then	occurs.			
a. Wetting	b .Spreading			
c. Capillary rise	d. All of these			
1 5				
19. The level of water rises up in a capillary tube	e because:			
a. Adhesive force > Cohesive force	b. Adhesive force < Cohesive force			
c. Adhesive force = Cohesive force	d. None of the above			
20. In inorganic metal complexes, coordination i	number means the number of:			
a. Ionic bonds that a metal can form with	b. Ionic bond that a ligand can form with			
another metal	a metal			
c. Non- ionic bond that a metal can form	d. Ionic bonds that a metal can form with			
with ligands	ligands			

-- --- --

(<u>PART-B : Descriptive</u>)

Time : 2 hrs. 40 min.		Marks: 35
	[Answer any seven (7) questions]	
1.	How is a solution real or ideal according to Raoult's law?	5
2.	Write short note on HLB scale.	5
3.	Classify different types of Complexes.	5
4.	What is Polymorphism? Write the Pharmaceutical Importance.	5
5.	Write a note on Partition Coefficient.	5
6.	Define Surface Tension and Interfacial Tension.	5
7.	Write about Buffer and its Pharmaceutical application.	5
8.	What is spreading coefficient and how it is important.	5
9.	Differentiate between crystalline and amorphous solid with suitable examples.	5

(<u>PART-C : Long type questions</u>)

[Answer any two (2) questions]

1.	What is an isotonic solution? Mention the methods of adjustment of tonicity.	10
2.	Describe the methods for determination of surface tension of liquid.	10
3.	Define the following: (any 5) a) Refractive Index b) Optical Rotation c) Dielectric Constant d) Dipole Moment e) Dissociation Constant f) Eutectic Mixture	2×5=10

-- --- --