Write the following information in the first page of Answer Script before starting answer

ODD SEMESTER EXAMINATION: 2020-21

Exam ID Number		
Course	Semester	
Paper Code	Paper Title	
Type of Exam:	(Reg	gular/Back/Improvement)

Important Instruction for students:

- 1. Student should write objective and descriptive answer on plain white paper.
- 2. Give page number in each page starting from 1st page.
- **3.** After completion of examination, Scan all pages, convert into a single PDF, rename the file with Class Roll No. (2019MBA15) and upload to the Google classroom as attachment.
- 4. Exam timing from 10am 1pm (for morning shift).
- 5. Question Paper will be uploaded before 10 mins from the schedule time.
- **6.** Additional 20 mins time will be given for scanning and uploading the single PDF file.
- **7.** Student will be marked as ABSENT if failed to upload the PDF answer script due to any reason.

B.Sc. BIOTECHNOLOGY THIRD SEMESTER BIOTECHNOLOGY & HUMAN WELFARE BBT – 302 [REPEAT]

Duration : 3 hrs.

Time : 20 min.

(<u>PART-A: Objective</u>)

Marks: 20

Full Marks: 70

Choose the correct answer from the following: 1×20=20

1.	The technique to distinguish the individuals a. DNA fingerprinting c. Molecular fingerprinting	based on their DNA patterns is called:b. DNA profilingd. All of these
2.	The genome consist of exons by percent: a. 0.5-1 c. 1-1.2	b. 0.8-1.4 d. 1.1-1.5
3.	Bioaugmentation is a process that involves: a. Using plant for bioremediation c. Sludge removal	b. Bioventingd. Adding microbes to a cleanup site
4.	The process of decomposition of agricultural a. Land fills c. Vermi-composting	waste by earthworms is called: b. Shredding d. Composting
5.	Actinomycin D and mitomycin C are used asa. Antibiotics for control of plant diseasesc. Antibiotics used as food preservatives	
6.	Which of the following are the storage polysaa. Glycogenc. Glucose	
7.	Deletion of isopentenyl transferase (ipt) resul a. Rooty crowngall c. Large tumour	ts in: b. Shooty crowngall d. None of the above
8.	The method which can be used to amplify fra a. TCR c. MCR	ngments of gene may be: b. PCR d. UCR
9.	When all the monosaccharides in a polysacch polysaccharide is called a: a. Glycogen c. Heteroglycan	aride are same type, such type ofb. Homoglycand. Oligosaccharide

a. 30,000-40,000 c. 40,000-46,000	b. 35,000-42,000 d. 50,000-60,000
 11. DNA profiling is used: a. In Forensic studies and in cases of disputed parentage c. To confirm cell line identity 	 b. In pedigree analysis and to study migration pattern d. All of these
 12. What is the size of micropipette tip used in a. 0.5-10 pm c. 0.5-100 pm 	microinjection? b. 0.5-1 pm d. 0.5- 1000 pm
13. The allosteric inhibitor of an enzyme:a. Causes the enzyme to work fasterc. Participates in feedback regulation	b. Bind to the active sited. Denatures the enzyme
14. Which of the following is not a free living ata. Azotobacterc. Cyanobacteria	erobic baceteria? b. Klebsiella d. Clostridium
15. Which of the following bacterium is called a a. <i>Bacillus subtilis</i>c. <i>Trichoderma</i> sp.	as the superbug that could clean up oil spills b. <i>Pseudomonas putida</i> d. <i>Bacillus denitrificans</i>
16. RAPD is a:a. DNA sequencing based methodc. PCR based method	b. Restriction digestion based methodd. All of these
17. Industrial production of Xanthan are from:a. Xanthomonas oryzaec. Xanthomonas campestris	b. Xanthomonas citrid. Xanthomonas arcoricola
18. The hybridomas are made bya. Fusing T cells with myeloma cellsc. Fusing T helper cells with myeloma cell	 b. Fusing B cells with myeloma cells d. Fusing B memory cells with myeloma cells
19. Which of the "vir" proteins are involved in and bacterial?a. vir B and vir D1c. vir C and vir D4	 the formation of conjugal tube between plant b. vir B and vir D4 d. vir C and vir D1

10. The estimated number of protein-coding genes ranges from:

- 20. Which of the following is a mismatch?
 - a. Polymerase -Taq polymerase
 - c. Primer oligonucleotide

b 35 000 42 000

- ma cells
- ith myeloma

-- --- --

- b. Template double stranded DNA
- **d.** Synthesis 5' to 3' direction

(<u>PART-B : Descriptive</u>)

	Time : 2 hrs. 40 min.	Marks : 50
	[Answer question no.1 & any four (4) from the re	est]
1.	Discuss the concept and the salient features behind the development of Human Genome Project.	10
2.	 a. What do you mean by polysaccharides? Discuss the production any one industrially used polysaccharide. b. Discuss the process of alcohol production. 	of 5+5=10
3.	b.Discuss the process of alcohol productiona. Explain the organization of T-DNA.b. Describe the process of T-DNA transfer with reference to the	4+6=10
4.	"vir" genes involved.a. What are the objectives behind protein engineering and how it is done?b. Discuss three turgs of Engune Inhibition	5+5=10
5.	 b. Discuss three types of Enzyme Inhibition. a. What do you mean by monoclonal antibody? Discuss in terms of its formation. b.Briefly discuss the various types of recombinant vaccines. 	5+5=10
6.	a. Discuss the various interaction that takes place between plants and microbes.b. How the improvement of the qualitative trait of the livestock takes place?	5+5=10
7.	a. What do you mean by hydrocarbon? Discuss in terms of its degradation techniques.b. Discuss various degradation techniques of agricultural waste.	5+5=10
8.	a. What are the various types of PCR?b. How microsatellites DNA are different from minisatellite DNAc. Discuss briefly the working principle of RAPD.	3+3+4=10