ODD SEMESTER EXAMINATION: 2020-21

Exam ID Number	
Course	Semester
Paper Code	Paper Title
Type of Exam:	(Regular/Back/Improvement)

Important Instruction for students:

- 1. Student should write objective and descriptive answer on plain white paper.
- 2. Give page number in each page starting from 1st page.
- 3. After completion of examination, Scan all pages, convert into a single PDF, rename the file with Class Roll No. **(2019MBA15)** and upload to the Google classroom as attachment.
- 4. Exam timing from 10am 1pm (for morning shift).
- 5. Question Paper will be uploaded before 10 mins from the schedule time.
- 6. Additional 20 mins time will be given for scanning and uploading the single PDF file.
- 7. Student will be marked as ABSENT if failed to upload the PDF answer script due to any reason.

M.Sc. MATHEMATICS THIRD SEMESTER SPECIAL THEORY OF RELATIVITY **MSM-305**

Duration: 3 hrs.

Full Marks: 70

[PART-A : Objective] Time: 20 min. Choose the correct answer from the following: 1. Which of the following is not a consequence of Lorentz Transformation? a. Time Dilation **b.** Relativity of Simultaniety c. Drag effect d. Length contraction 2. Special Relativity deals with: a. Non-Uniform motion **b.** Relative motion **c.** Uniform motion **d.** Absolute motion 3. Which of the following law has been proved as an invariant form by Galilean Transformation ? a. Maxwell's law **b.** Newton's law **d.** None of these c. Both 4. Result of Michelson Morley experiment is: a. Non existence of ether **b**.Existence of ether c. Correction of Einstein's Rejection **d.** None of the above 5. Absolute motion takes place when body move: a. With reference to some other body **b.** Without reference to some other body c. No motion **d.** None of the above 6. A Real life example of Uniform Relative motion is: a. A Train moving in a certain direction **b.** A Train starts from rest with a certain speed relative to others **c.** The earth is moving around the Sun

7. Relativistic equation for the phenomenon of Aberration of light is:

a.

$$\tan \theta = \frac{(\sin \theta')\sqrt{1 + \frac{v^2}{c^2}}}{\cos \theta - \frac{v}{c}}$$
c.

$$\tan \theta = \frac{(\sin \theta')\sqrt{1 + \frac{v^2}{c^2}}}{\sin \theta - \frac{v}{c}}$$

c.

b.

$$\tan \theta = \frac{(\sin \theta')\sqrt{1 - \frac{v^2}{c^2}}}{\cos \theta - \frac{v}{c}}$$
d.

$$\tan \theta = \frac{(\sin \theta')\sqrt{1 + \frac{v^2}{c^2}}}{\sin \theta + \frac{v}{c}}$$

Marks: 20

1X20 = 20

d. A ball drawn downwards

- 8. The equation *divE* = 0 known as:
 a. Gauss law in electricity
 c. Maxwell's law in electricity
- 9. The equation $\frac{\partial F^{\mu\nu}}{\partial x^o} = j^{\mu}$ known as:

a. Maxwell's equation **c.** Lorentz force equation

10. In electromagnetic equation Value of c is:

a.
$$\frac{-1}{\sqrt{\mu_0 \varepsilon_0}}$$

c.
$$\frac{1}{\sqrt{\varepsilon_0}}$$

- 11. Minkowski diagram also known as:
 - **a.** (x ct) diagram
 - **c.** (z ct) diagram
- 12. An invariant Space time interval is:

a.
$$\sqrt{c^2(t_2 - t_1)^2 - |x_2 - x_1|^2}$$

c. $\sqrt{c^2(t_2 - t_1)^2 + |x_2 + x_1|^2}$

- 13. One application of Time Dilation:a. Problem of Pion Decayc. Simultanenity problem
- 14. In Time Dilation two events occur at:a. One place
 - c. One or two place

15.

The term n^2 known as: a. Newton's Constant c. Fresnal Drag coefficient

16. Which of the following is Space-like interval?

a.

$$c^{2} < \frac{|x_{2} - x_{1}|^{2}}{(t_{2} - t_{1})^{2}}$$
b.

$$c^{2} > \frac{|x_{2} - x_{1}|^{2}}{(t_{2} - t_{1})^{2}}$$
c.

$$c^{2} = \frac{|x_{2} - x_{1}|^{2}}{(t_{2} - t_{1})^{2}}$$
c.

$$c^{2} \ge \frac{|x_{2} - x_{1}|}{(t_{2} - t_{1})^{2}}$$

b. Gauss law in Magnetism **d.** Maxwell's law in Magnetism

b.Electromagnetic equation in concise form **d.** None of the above

b.
$$\frac{-1}{\sqrt{\varepsilon_0}}$$

d.
$$\frac{1}{\sqrt{\mu_0\varepsilon_0}}$$

b. (y - ct) diagram **d.** None of the above

b.
$$\sqrt{c^2(t_2-t_1)^2+|x_2-x_1|^2}$$

d. $\sqrt{c^2(t_2-t_1)-|x_2-x_1|}$

b.Relativistic equation **d.**None of the above

b. Two place**d.** None of the above

b. Maxwell's constant **d.** None of the above

17. The statement "Space and Time working together" first introduced by: a. Lorentz b. Galilean

c. Minkowski

- d. Talman
- 18. Which of the following option is correct if l' measured from $S'_{and} l$ measured from $S_{?}$
 - **b.** l' < l**a.** l' = ld. $1^{/} \neq 1$ c. $1^{/} > 1$

19. In Lorentz force equation $F = q_0(E + u \times B)$, u represent:

a. Magnetic field

b. Velocity of the charge particle

c. Electric field

d. None of the above

- **20.** Current density is given by:
 - **a.** $j = \sigma u$ where σ charge density, *u* velocity of the particle
 - **c.** $j = \sigma \times u$ where σ charge density, *u* velocity of the particle
- **b.** $j = -\sigma u$ where σ charge density, *u* velocity of the particle
- **d.** $j = \sigma/u$ where σ charge density, *u* velocity of the particle

-- --- --

(<u>PART-B : Descriptive</u>)

Time : 2 hrs. 40 min.		Marks : 50
	[Answer question no.1 & any four (4) from the rest]	
1.	Write three consequence of Lorentz Transformation? Explain any one consequence of Lorentz transformation with Real life example.	3+7=10
2.	What are the two postulates of Special Theory of Relativity? Find the Lorentz Transformation equation and derive Galilean Transformation.	2+8=10
3.	What is the result of Maxwell's electromagnetic theory? Explain an experiment for establishing the result of non existence of ether.	1+9=10
4.	What is charge density and current density? Prove that $j = \frac{\sigma_0}{m_0} p$	4+6=10
5.	What are the three types of particle discussed in Minkowski Geometry? Explain Time-like, Space-like and Light-like interval.	3+7=10
6.	What do you mean by Energy-momentum tensor? Prove that $\frac{\partial T^{\mu\nu}}{\partial x^{\mu}} = F^{\mu}$	6+4=10
7.	Explain Four-Dimensional Quasi-Euclidean Flat space time.	10
8.	Establish the mass and energy relation.	10

= = *** = =