BACHELOR OF COMPUTER APPLICATION Second Semester DISCRETE MATHEMATICS

BCA-203

[PART-A: Objective]

Choose the correct answer from the following:
1 $\times 20=20$

1. If φ and q are any two propositions, then $p \vee q$ is called
a. Conjunction
b. Disjunction
c. Negation
d. None of these
2. If the truth value of a proposition p is T, then the truth value of $\sim(\sim p)$ is
a. T
b. F
c. Cannot be determined
d. None of these
3. If a vertex v of a rooted tree has no children then it is called
a. Leaf
b. depth of v
c. descendent of v
d. none of these
4. The degree of a vertex of a complete graph K_{m} is
a. m
b. $m-1$
c. $m+1$
d. $m+2$
5. The height of A of the following rooted tree is

a. 0
b. 1
c. 2
d. 3
6. A cyclic group is always
a. Abelianb. Non abelian
c. Non commutative
d. None of these
7. The truth value of $p \wedge q$, when p is false and q is true is
a. T
b. F
c. Cannot be determined
d. None of these
8. If A and B are any two sets, then the set of elements that belong to A but not belong to B is called
a. Union of A and B
b. Intersection of A and B
c. Difference of A and B
d. None of these
9. The number of permutations of n objects including n_{1} identical objects of type1, n_{2} identical objects of type2 and n_{3} identical objects of type 3 is equal to
a. $\frac{n!}{n,}$
b. $\frac{n!}{n!}$
c. $\frac{n!}{n_{x}}$
d. $\frac{n!}{n_{2}!n_{2} n_{3}!}$
10. Let $A=\{0,1,2,3\}$ and let $R_{1}=\{(0,0),(1,1),(2,2),(3,3)\}$, $\mathrm{R}_{2}=\{(0,0),(1,1),(2,2),(3,3),(1,2),(2,1)\}$.
Which Of the above relation is / are equivalence relations?
a. Only R_{1}
b. Only R_{2}
c. Both R_{1} and R_{2}
d. Neither R_{1} nor R_{2}
11. The recurrence relation of the sequence $\{4,12,36,108, \ldots \ldots\}$ is
a. $a_{n+1}=3 a_{n}$
b. $a_{n+1}=2 a_{n}$
c. $a_{n+1}=5 a_{n}$
d. $a_{n+1}=4 a_{n}$
12. If $(R,+,$.$) is aring, then for any a, b, c \in R$, which of the following is false
a. $a \cdot(b-c)=a . b-a . c$
b. $(-a)(-b)=a b$
c. $(a-b) \cdot c=a . c-a . b$
d. $a \cdot(-b)=-(a b)$
13. The dual form of $p \vee \sim p \equiv T$ is
a. $p \wedge \sim p \equiv F$
b. $p \wedge \sim p \equiv T$
c. $p \vee \sim p \equiv F$
d. None of these
14. The number of lines of a complete bipartite graph $K_{m, n}$ is
a. $m+n$
b. $m n$
c. m / n
d. n / m
15. The set of natural numbers with the binary operation addition is aa. Semi group
b. Group
c. Abelian group
d. None of the above
16. The least and greatest element of the Poset $(\{1,2,4,8,16\}$, \mid), where ' \mid ' means divisor of, are respectively
a. 1,4b. 2,8
c. 1,16
d. 4,16
17. If the repetition is not allowed, then how many numbers from the six digits $1,2,3$, $5,7,8$ are less than 4000 ?
a. 120
b. 360
c. 480
d. 60
18. The length of any shortest cycle in a graph is called \qquad $-$
a. distance
b. diameter
c. girth
d. circumference
19. If q is the number of edges and v_{i}^{\prime} s are the vertices of a graph G , then Choose the correct answer.
a. $q=\frac{1}{2} \sum d e g v_{i} \quad$ b. $q=2 \sum d e g v_{i}$
$\begin{array}{ll}\text { c. } q=\sum d e g v_{i} & \text { d. } q=3 \sum \operatorname{deg} v_{i}\end{array}$
20. If $f: A \rightarrow B$ and $g: B \rightarrow C$, then the domain of the function $g \circ f$ is \qquad -.a. A
b. B
c. C
d. None of these

UNIVERSITY OF SCIENCE \& TECHNOLOGY; MEGHALAYA

Question Paper CUM Answer Sheet
[PART (A): OB]ECTIVE]

Serial no. of the ma Answer sheet

Course \qquad

Semester : \qquad Roll No :

Enrollment No: \qquad Course code :

Course Title :

\qquad

Session : \qquad 2016-17 \qquad Date : \qquad

Instructions / Guidelines

The paper contains twenty (20) / ten (10) questions.
$>$ The student shall write the answer in the box where it is provided.
$>$ The student shall not overwrite / erase any answer and no mark shall be given for such act.
>Hand over the question paper cum answer sheet (Objective) within the allotted time (20 minutes / 10 minutes) to the invigilator.

| Full Marks | Marks Obtained | Remarks |
| :---: | :---: | :---: | :---: |
| 20 | | |

BACHELOR OF COMPUTER APPLICATION SECOND SEMESTER DISCRETE MATHEMATICS
 BCA-203

Duration: 3 Hrs.

$$
\begin{gathered}
\left\{\begin{array}{l}
\text { Part: A }(\text { Objective })=20 \\
\text { Part : B (Descriptive) }=50
\end{array}\right\} \\
{[\text { PART-B: Descriptive] }}
\end{gathered}
$$

Duration: 2 Hrs. 40 Mins.
Marks: 50

[Answer question no. One (1) \& any four (4) from the rest]

1. Define conditional and bi conditional proposition. Construct the truth
table for both the conditional and bi conditional propositions.
2. Prove by mathematical induction that
(i) $1^{2}+2^{2}+3^{2}+\cdots \ldots+(2 n-1)^{2}=\frac{1}{3} n(2 n-1)(2 n+1)$
(ii) $n^{3}+2 n$ is divisible by 3 , for $n \geq 1$.
3. (a) State and prove the Handshaking theorem for an undirected graph.
(b) For each of the following degree sequences, find if there exist a graph. In each case, either draw a graph or explain why no graph exist.
(i) $4,4,4,3,2$
(ii) $3,3,3,3,2$
4. (a) Define subgroup. Prove that the necessary and sufficient condition for
a non empty subset H of a group $(G,$.$) to be a subgroup is$
$a, h \notin H \Rightarrow a b^{-1} \vDash H$.
(b)The union of two subgroups may not be a subgroup. Justify with an example.
5. From a club consisting of 6 men and 7 women, in how many ways can
(a) 3 men and 4 women?
(b) 4 persons which has at least one woman?
(c) 4 persons that has at most one man?
(d) 4 persons that has both men and women?
(e) 4 persons so that two specific members are not included?
6. (a) Define a Poset and give an example. What is maximal and minimal $\quad 3+2+5=10$ elements of a poset?
(b) Find the maximal and minimal elements of the posets given in the following Hasse diagrams

7. (a) Define a full binary tree and give an example.
$4+6=10$
(b) The number n of vertices of a full binary tree is odd and the number of pendant vertices (leaves) of the tree is equal to $(n+1) / 2$.
8. (a) Define inverse of a function. Prove that a function $f: A \rightarrow B$ is invertible if and only if it is one one and onto.
(b) Define composition of functions. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are one one and onto functions, then show that $f \circ g$ is also an one one and onto function.

$$
==* * *==
$$

