1X20=20

a. 0

BACHELOR OF COMPUTER APPLICATION SECOND SEMESTER

DISCRETE MATHEMATICS BCA-203

[PART-A: Objective]

	. [TAKT IX O O JECTIVE]
CH	noose the correct answer from the following:
1.	If p and q are any two propositions, then $p \lor q$ is called
	a. Conjunction
	b. Disjunction
	☐ c. Negation
	d. None of these
2.	If the truth value of a proposition p is T , then the truth value of $\sim (\sim p)$ is
	a. T
	b. F
_	c. Cannot be determined
	d. None of these
3.	If a vertex ν of a rooted tree has no children then it is called
	a. Leaf
	b. depth of v
	c. descendent of v
	d. none of these
4.	The degree of a vertex of a complete graph K_m is
	a. m
	- b. $m-1$
	- c. $m+1$
	d. $m + 2$
5.	The height of A of the following rooted tree is
	B A F

D

	b. 1.	
	c. 2	
	d. 3	
6.	A cyclic group is always	
	a. Abelian	
	b. Non abelian	
	c. Non commutative	
	d. None of these	
7.	The truth value of $p \wedge q$, when p is false and q is true is	
	a. T	
	b. F	
	c. Cannot be determined	
	d. None of these	
8.	If A and B are any two sets, then the set of elements that belong to A but not belong	
	to B is called	
	a. Union of A and B	
	b. Intersection of A and B	
	c. Difference of A and B	
	d. None of these	
9.	The number of permutations of n objects including n_1 identical objects of type1, n_2	
	identical objects of type2 and n ₂ identical objects of type3 is equal to	
	a. <u>n!</u>	
	$n_1!$	
	b. $\frac{n!}{n_x!}$	
	c. $\frac{n!}{n_x!}$	
	d. <u>n!</u>	
	d. $\frac{n!}{n_1!n_2!n_3!}$	
10.	Let $A=\{0,1,2,3\}$ and let $R_1=\{(0,0), (1,1),(2,2),(3,3)\}$,	
	$R_2 = \{(0,0), (1,1), (2,2), (3,3), (1,2), (2,1)\}.$	
	Which Of the above relation is /are equivalence relations?	
	a. Only R ₁	
	b. Only R ₂	
	c. Both R ₁ and R ₂	
	d. Neither R ₁ nor R ₂	
11	The requirement relation of the sequence (4.12.26.100)	
11.	The recurrence relation of the sequence {4, 12, 36,108,} is	
	3 0 30	
	a. $a_{n+1} = 3a_n$ b. $a_{n+1} = 2a_n$	
	b. $a_{n+1} = 2a_n$	
	c. $a_{n+1} = 5a_n$	1
	d. $a_{n+1} = 4a_n$	

12. If $(R, +, .)$ is aring, then for a. $a.(b-c) = a.b - a.$ b. $(-a)(-b) = ab$ c. $(a-b).c = a.c - a$ d. $a.(-b) = -(ab)$	C	, which of the following is false
13. The dual form of $p \lor \sim p \equiv$	T is	
a. $p \land \sim p \equiv F$	b. $p \land \sim p \equiv 7$	
c. $p \lor \sim p \equiv F$	d. None of th	ese
14. The number of lines of a co	mplete bipart	ite graph K is
a. $m+n$	b. mn	O I neat
	d. n/m	
15. The set of natural numbers		ry operation addition is a
a. Semi group	b. Group	
c. Abelian group	d. None of	the above
16. The least and greatest eledivisor of, are respectively a. 1, 4 b. 2, 8 c. 1, 16 d. 4, 16	ment of the F	Poset ({1, 2, 4, 8, 16},), where ' ' means
	wed, then how	w many numbers from the six digits 1, 2, 3,
5, 7, 8 are less than 4000? a. 120 b. 360	c. 480	d. 60
18. The length of any shortest	cycle in a gran	sh is called
	ameter	At is called
	rcumference	
19. If q is the number of edges Choose the correct answer a. $q = \frac{1}{2} \sum degv_i$ b. q c. $q = \sum degv_i$ d. q	$= 2 \sum deg v_i$	he vertices of a graph G, then
20. If $f: A \to B$ and $g: B \to C$, the a. A b. B	nen the domain	n of the function <i>gof</i> is d. None of these
	=-	= *** = =

UNIVERSITY OF SCIENCE & TECHNOLOGY, MEGHALAYA

Question Paper CUM Answer Sheet

[PART (A) : OBJECTIVE]

Serial no	of the	ma
Ansv	er shee	t

	ter:		Roll No:	
Enroll	ment No:		Course code:	
Course	e Title :			
Sessio	n: 2	016-17	Date:	
******	Instructions / Guidelines			
>	> The paper contains twenty (20) / ten (10) questions.			
	> The student shall write the answer in the box where it is provided.			
>	 The student shall such act. 	not overwrite / erase any	answer and no mark shall be given for	
> Hand over the question paper cum answer sheet (Objective) within the allotted tin (20 minutes / 10 minutes) to the invigilator.			sheet (Objective) within the allotted time	
	Full Marks	Marks Obtained	Remarks	
	20			
	<u> </u>		<u> </u>	

BACHELOR OF COMPUTER APPLICATION

SECOND SEMESTER DISCRETE MATHEMATICS BCA-203

Duration: 3 Hrs.

Marks: 70

 $\begin{cases}
Part : A (Objective) = 20 \\
Part : B (Descriptive) = 50
\end{cases}$

[PART-B: Descriptive]

Duration: 2 Hrs. 40 Mins.

Marks: 50

[Answer question no. One (1) & any four (4) from the rest]

1. Define conditional and bi conditional proposition. Construct the truth table for both the conditional and bi conditional propositions.

2+2+3+3=10

2+2+3+3=10

2. Prove by mathematical induction that

(i) $1^2 + 2^2 + 3^2 + \dots + (2n-1)^2 = \frac{1}{2}n(2n-1)(2n+1)$

(ii) $n^2 + 2n$ is divisible by 3, for $n \ge 1$.

5+5=10

3. (a) State and prove the Handshaking theorem for an undirected graph.

(b) For each of the following degree sequences, find if there exist a graph. In each case, either draw a graph or explain why no graph exist.

(i) 4, 4, 4, 3, 2

(ii) 3, 3, 3, 3, 2

4. (a) Define subgroup. Prove that the necessary and sufficient condition for 2+5+3=10 a non empty subset H of a group (G, .) to be a subgroup is $a, b \in H \Rightarrow ab^{-1} \in H$.

(b) The union of two subgroups may not be a subgroup. Justify with an example.

5. From a club consisting of 6 men and 7 women, in how many ways can we select a committee of

2+2+2++2+2 =10

- (a) 3 men and 4 women?
- (b) 4 persons which has at least one woman?
- (c) 4 persons that has at most one man?
- (d) 4 persons that has both men and women?
- (e) 4 persons so that two specific members are not included?
- (a) Define a Poset and give an example. What is maximal and minimal elements of a poset?

3+2+5=10

(b) Find the maximal and minimal elements of the posets given in the following Hasse diagrams

7. (a) Define a full binary tree and give an example.

4+6=10

(b) The number n of vertices of a full binary tree is odd and the number of pendant vertices (leaves) of the tree is equal to (n+1)/2.

2+3+2+3=10

- (a) Define inverse of a function. Prove that a function f: A → B is invertible if and only if it is one one and onto.
 - (b) Define composition of functions. If $f: A \to B$ and $g: B \to C$ are one one and onto functions, then show that $f \circ g$ is also an one one and onto function.

= = *** = =