REV-00 BCA/05/10

2017/08

BACHELOR OF COMPUTER APPLICATION Second Semester DIGITAL LOGIC & DESIGN (BCA - 06)

Duration: 3Hrs.

Full Marks: 70

Marks: 50

 $2 \times 5 = 10$

PART A (Objective) =20 PART-B (Descriptive)=50

PART-B (Descriptive)

Duration: 2 hrs. 40 mins.

1. Answer the following questions (any five):

- a) Covert (378.98)₁₀ to Octal.
- b) Obtain 1's and 2's compliment of the following:
 - iii) 1010101

iv)0111000

- c) State and prove Distributive and Idempotence laws of Boolean algebra.
- d) Construct the truth table for AND and OR gate.
- e) Explain DeMorgans law.
- f) What do you mean by Don't Care Condition?
- g) What is Sequential Circuit Explain?

2. Answer the following questions (any *five*): 3×5=15

- a) What do you mean by shift registers? Explain.
- b) Briefly explain binary ripple counter.
- c) Write a short note on ASCII and EBCDIC codes.
- d) What do you mean by Number System? Write about any 2 number systems.

- e) Explain logic gates for XOR, NAND and NOR gates with the help of logic circuit diagram.
- f) Explain J-K flip flop with its logic diagram.
- g) What are Registers and Counters, explain.

3. Answer the following questions (any five):

a) Describe the operations performed by the Half-adder and Full-adder arithmetic circuit.

5×5=25

- b) Explain the working principle of Decimal Adder.
- c) Obtain the truth table for:

$$F = xy + xy' + y'z$$

F = xy + x'y' + y'z

d) Simplify the following function using K-map:

F = A'B'CD' + A'B'CD + AB'CD' + AB'CD + A'BCD + A'BC'D

- e) Briefly explain decoders with the help of a diagram.
- f) Explain design of a simple computer with block diagram.
- g) Briefly explain clocked R-S flip flop with the help of logic diagram.

REV-00 BCA/05/10

REV-00 BCA/05/10	2017/08		
BACHELOR OF COMPUTER APPLICATION Second Semester DIGITAL LOGIC & DESIGN (BCA - 06)			
Duration: 20 minutes	Marks – 20		
PART-A (Objective)			
Time: 20 mins	Total Marks: 20		
I. Choose the correct option:	1×20=20		
1. How many states do a binary variable has? a) 2 b) 3 c) 4	1		
2. The NAND function is complement of which function:a) ORb) XORc) AND			
 3. A computer system is sometimes divided into 2 functional entities, they a) Hardware & Software b) OS & Software c) CPU & OS 	are:		
 4. A function of 'n' variables will have how many minterms: a) 2ⁿ b) 2n c) 2 			
 5. A combinational circuit that performs the arithmetic addition of 2 bits is a) Half adder b) Full adder c) JK Flip Flop 	s called:		
6. The input variables of a half adder is called:a) Augend & addendb) Sum & carryc) Bits			
7. Base of decimal number system is:a) 2b) 8c) 10			
 8. Binary equivalent of (C6)₁₆ is: a) 11000110 b) 11110000 c) 00010011 			
	11 C D 1		

9. An illustration that is used to visualise the relationships among the variables of a Boolean expression is: a) Venn Diagram b) Logic circuit c) K-map

10.Symbol ' Σ ' stands for: a) ORing of terms b) ANDing of terms c) XORing of terms

11.Each square in K-map rep a) One minterm	resents: b) One maxterm	c) One variable
12.A four variable K-map wi a) 2 minterms	ll have: b) 16 minterms	c) 8 minterms
13.A decoder converts binary lines: a) 2 b) 2'	y information from 'n' inj n c) 2^{2}	put lines into how many unique outpu
14.A flip flop has 2 useful sta a) Input & output	ates: b) Set & clear	c) A & B
15.A flip flop sensitive to pu a) Latch	lse duration is called: b) Register	c) Master Slave
16.A register capable of shifta) Shift register	ing its binary information b) Register	n either to left or right is called: c) Flip flop
17.x(y+z) = xy + xz is an exa a) Demorgans law	ample of: b) Involution law	c) Distributive law
18.(x+y)' = x'y' is an examp a) Commutative law	le of: b) Demorgans law	c) Absorption law
19.The 'inverter logic gate' h a) 1 input, 1 output	b) 2 inputs, 1 output	c) 2 input, 2 outputs
20.MSI counters come in 2 c a) Ripple counters, synchr b) Half adder, full adder c) IK flin flon RS flin flo	ategories: ronous counters	
