REV-00 MCA/13/18

> MASTER OF COMPUTER APPLICATION First Semester Digital Logic & Design (MCA - 02)

Duration: 3Hrs.

Full Marks: 70

Part-A (Objective) =20 Part-B (Descriptive)=50

(PART-B: Descriptive)

Duration: 2 hrs. 40 mins.

1. Answer the following questions (any five)

- a) Divide $(101101)_2$ by $(110)_2$
- b) Prove that

AB+A(B+C)+B(B+C)=B+AC

- c) What is the octal equivalent of hexadecimal number(B9F.AE)
- d) Simplify the given Boolean expression

 $Y = A + \overline{A} B + \overline{A} \overline{B} C + \overline{A} \overline{B} \overline{C} D$

e) Draw the circuit diagram of full subtractor.

f) Explain the difference between a sequential circuit and combinational circuit.

g) Give the characteristic table and excitation table of SR flip flop.

2. Answer the following questions (any five)

3×5=15

a) Realize an OR gate using a) NAND gate and b) NOR gate

b) Given the logic function of three variables

 $f(A, B, C) = A + \overline{B}C$. Express f in the standard SOP form.

c) Design1X4 demultiplexer.

d) Minimize the following function using K-map.

 $F(A,B,C,D) = \sum m(1,3,7,11,15) + \sum d(0,2,5)$

- e) Design 3X8 decoder using 2X4 decoder.
- f) Construct T flip flop using SR flip flop.

g) Draw the logic diagram of a 4-bit serial in-parallel-out shift register.

2×5=10

Marks: 50

3. Answer the following questions (any five)

a) Convert (1011)₂ and (101)₂ into decimal numbers. Multiply them and then convert the result into binary.

b) Realize following function using 8:1 multiplexer.

 $Y(A,B,C,D) = ABC + ABD + AB\overline{C}\overline{D} + \overline{A}B\overline{C}D$

c) Implement a full adder with two half adders and an OR gate.

d) Design a counter which counts decimal values

0, 1, 3, 4, 5, 6

e) Give the state diagram of J-K flip flop.

f) Design a four bit binary synchronous counter with D flip flop.

g) Write short notes on any one of the following

i) Multiplexer

ii)Shift Register

iii) MOD-6 synchronous counter.

REV-00 MCA/13/18

(MCA - 02)

(The figures in the margin indicate full marks for the questions)

Duration: 20 minutes

「シャー

Marks – 20

PART A- Objective Type

Answer all the questions. Each question carries one mark.

Choose correct or the best alternative in the following.

1.	Radix of binary number	system is ?
	A) 0	B) 1
	C) 2	D) A &B

2.	A group of four bits is known as	
	A) bit	B)byte
	C) nibble	D)word

- 3. 1's complement representation of decimal number of -17 by using 8 bit representation is

 A) 11101110
 B) 11011101

 C) 11001100
 D) 00010001
- 4. The Gray code for decimal number 6 is equivalent to
 A) 1100
 B) 1001
 C) 0101
 D) 0110
 - 5. The binary equivalent of octal number (367.52) is

 A) 010101111.101010
 B) 011110111.101010

 C) 1111001111.101010
 D) 111110111.101010
- 6. The hexadecimal number 'A0' has the decimal value equivalent to A) 80
 B) 256
 C) 100
 D) 160
- 7. The NAND gate output will be low if the two inputs are
 A) 00
 B) 01
 C) 10
 D) 11
- DeMorgan's first theorem shows the equivalence of A) OR gate and Exclusive OR gate.
 - B) NOR gate and Bubbled AND gate.
 - C) NOR gate and NAND gate.
 - D) NAND gate and NOT gate.

2014/01

 $1 \times 20 = 20$

 9. If X,Y and Z are Boolean variables, A) X+X̄Y C) XYZ 	then the expression $X(X+\overline{X}Y) Z(X+Y+Z)$ is equal to B) $X+Y+Z$ D) XZ
10. The simplified form of a logic functionA) ABC) 1	on Y=AB+ \overline{A} + \overline{B} is B) \overline{A} + \overline{B} D) 0
11. How many two –input AND and ORA) 2,2C) 3, 3	gates are required to realize Y=CD+EF+G B)2,3 D) none of these
12. Which of the following is a universalA) ANDC) OR	gate? B) NAND D) NOT
13. A full adder logic circuit will haveA) Two inputs and one outputB) Three inputs and three outputsC) Two inputs and two outputsD) Three inputs and two outputs	
14. The gates required to build a half addeA) Ex-OR gate and NOR gateC) Ex-OR gate and AND gate	er are B) Ex-OR gate and OR gate D) Four NAND gates
15. How many select lines will a 16 to 1 mA) 4C) 5	nultiplexer will have B) 3 D) 1
16. One example of combinational circuiA) AdderC) Shift register	t is B) Counter D) Flip-flop
 17. A demultiplexer has A) One data input, a number of selection inputs and they have several outputs B) One output and one input C) Several inputs and several outputs. D) Several inputs and one output 	
18. How many flip- flops are required for A) 5C) 3	Mod-16 counter? B) 6 D) 4
 19. In a JK flip-flop, toggle means A) Set Q=1 and Q=0 C) Change the output to the opposite set of the opposite set of	B) Set Q=0 and $\overline{Q} = 1$ state. D) No change in output.
20. A ring counter consisting of five flip- A) 5 statesC) 32 states	flops will have B)10 states D) infinite state.
