CHAPTER 4

RESULT

The findings of the present study are presented under following sub-heads.

- 4.1 Socio-economic attributes of muga farmers
- 4.2 Knowledge level of the farmers on improved technologies of muga culture
- 4.3 Distribution of respondents according to their knowledge level on selected improved technologies of muga culture
- 4.4 Association between socio-economic characteristics of the muga farmers with the knowledge level of improved technologies of muga culture.
- 4.5 Adoption level of improved technologies of muga culture by the muga farmers
- 4.6 Distribution of respondents according to their adoption level on selected improved technologies of muga culture
- 4.7 Association between socio-economic characteristics of muga farmers and their adoption level of improved technologies of muga culture
- 4.8 Traditional practices of muga culture
- 4.9 Cocoon yield under traditional practices and improved practices of muga culture
- 4.10 Economics of muga silkworm crops under traditional and improved practices
- 4.11 Constraints for non adoption of improved technologies by the muga farmers.

4.1 : Socio economic attributes of muga farmers

The socio economic attributes of the farmers revealed from the study are presented in Table 4.1.1.

SI.	Attributes	Categories	Frequency	Percentage
1NO.		N (U + 25	50	26.0
1	Age	Young (Up to 35 years)	52	26.0
		Middle (36-56 years)	116	58.0
	a	Old (above 56 years)	32	16.0
2	Sex	Male	1/5	87.5
2		Female	25	12.5
3	Caste	SC	20	10.0
			/4	37.0
		OBC	82	41.0
		MOBC	17	8.5
		General	105	3.5
4	Marital status	Married	185	92.5
_		Unmarried	15	7.5
5	Education	Illiterate	11	5.5
		Primary level	84	42.0
		Secondary	94	47.0
		Graduate and above	11	5.5
6	Family size	Small (Up to 3	16	8.0
		members)	150	0.5.0
		Medium (4-5 members)	172	86.0
		Big (Above 5 members)	12	6.0
7	Land area under	< One acre	81	40.5
	muga food plants	One acre	94	47.0
		> One acre	25	12.5
8	Primary occupation	Agriculture	136	68.0
		Muga culture	53	26.5
		Other	11	5.5
9	Sericulture income	Low	180	90.0
		(Rs. 30000 to 40000)	11	
		Medium	11	5.5
		(Rs.40000 to 60000)	0	4.5
10	Experience in muge	Algn (Above Ks. 60000)	9 61	4.5
10	culture		01	50.5
	culture	10-20 years	104	52.0
		Above 20 years	35	17.5
11	Extension	Regular	59	29.5
	participation	Occasionally	118	59.0
		Never	23	11.5
12	Mass Media	Regular	60	30.0
	Participation	Occasionally	123	61.5
		Never	17	8.5

 Table 4.1.1: Socioeconomic attributes of muga farmers

Age: It is evident from the table that the largest percentages (58.0) of farmers are belonged to middle age category (36 to 56 years), whereas respondents in the old age category (more than 56 years) and young age category (less than 35 years) accounted 16.0 percent and 26.0 percent, respectively (Figure 4.1.1).

Sex: It is also evident from the Table that 87.5 % respondents were belonged to the male category while only 12.5 % were from female category, who are directly involved in muga culture (Figure 4.1.2).

Caste: The Table depicted that among the respondents, larger number of respondents (41.0 %) belonged to OBC followed by ST (37.0 %), SC (10.0 %), MOBC (8.5%) and 3.5 % general cast (Figure 4.1.3).

Marital status: It has found that only 7.5% of the respondents were unmarried while 92.5% of the respondents were married (Figure 4.1.4).

Education: It could be inferred from the Table that education of majority of respondents (47.0%) had up to secondary level followed by primary level (42.0%) and both graduate level and illiterate 5.5 percent each (Figure 4.1.5)

Family size: It was observed that majority of the respondents (86.0 %) had their family size with 4-5 members, while remaining (8.0 %) had their family with 3 members and 6.0% had above five members (Figure 4.1.6).

Land holdings: It could be seen from the Table that majority (47.0%) of the respondents had 1.0 acre of land under muga culture, 40.5% respondents had less than one acre and 12.5% respondents had above one acre of land under cultivation of muga food plants (Figure 4.1.7).

Primary occupation: It was observed that only 26.5% farmers had taken muga culture as primary occupation while majority of the farmers (68.0%) had taken agriculture as primary occupation. Remaining farmers (5.50%) had other sources of income like business, tea husbandry, etc were considered as primary occupation by the remaining farmers (Figure 4.1.8).

Sericulture income: It was observed that annual income from sericulture (muga culture) of most of the farmers (90.0 %) had low i.e. Rs. 30000 to 40000 only.

Annual income from sericulture of remaining 5.5% of the farmers had Rs. 40000 to 60000 and 4.5% farmers had above Rs. 60000 (Figure 4.1.9).

Experience: It could be evident from the table that majority of the respondents (52.0%) had wide range of experience on muga culture from 10-20 years, whereas 17.5 % respondents had more than 20 years experience. Reaming 30.5 % respondents had less than 10 years experience on muga culture (Figure 4.1.10).

Extension participation: It is also evident from the Table that 29.5 percent of the muga farmers had regularly participated in the extension programme. On the other hand, 59.0 percent muga farmers had occasionally and 11.5 percent had never participated in extension programme (Figure 4.1.11).

Mass media participation: The distribution of the farmers according to their mass media participant in the Table shows that as many as 61.5 percent had occasionally participated to mass media. However, 30.0 percent and 8.5 percent of the respondents had regular and never participated to mass media respectively (Figure 4.1.12).

Figure 4.1.1: Age groups of the farmers

Figure 4.1.2: Sex categories of farmers

Figure 4.1.3: Caste of the farmers

Figure 4.1.4: Marital status of the farmers

Figure 4.1.5: Education level of farmers

Figure 4.1.6: Family size of the farmers

Figure 4.1.7: Land holding under muga food plants

Figure 4.1.8: Primary occupation of the farmers

Figure 4.1.9: Sericulture income

Figure 4.1.10: Experience in Muga culture of the farmers

Figure 4.1.11: Extension participation

4.2: Knowledge level of the farmers on improved technologies of muga culture:

Data presented in Table 4.2.1 and Figure 4.2.1 indicated that 40.0 per cent of muga farmers had high level of knowledge followed by medium (32.5%) and low (27.5%) knowledge about the improved technologies of muga culture. The Table indicated that that majority of the muga farmers possessed high level of knowledge.

Knowledge % Category Criteria Frequency Score Low Less than < 66.6 55 27.5 (Mean - $\frac{1}{2}$ of SD) Medium Between 66.6-80.4 65 32.5 (Mean $\pm \frac{1}{2}$ of SD) High More than >80.4 80 40.0 $(Mean + \frac{1}{2} \text{ of } SD)$ Mean 73.5 and SD 13.9

 Table 4.2.1: Knowledge level of farmers on improved technologies of muga culture (N=200)

Figure 4.2.1: Knowledge levels of farmers on improved technologies of muga culture

4.3: Distribution of respondents according to their knowledge level on selected improved technologies of muga culture

Data presented in the Table 4.3.1 and Figure 4.3.1, it could be observed that majority of the farmers were having knowledge about spacing of host plants (94.5%) followed by inter-cropping with muga host plants (87.0%), early stage rearing (86.5%), pruning schedule (81.5%) and lahdoi (81.0%). The large number of farmers was also possessed knowledge in pre-brushing care (74.0%), application of FYM and NPK (64.5%), control of stem borer (63.0%) and improved mountage (78.0%). While, very less number of respondents had knowledge about biological control of uzi fly (39.5%), mother moth examination (24.5%) and egg surface disinfection (33.5%).

Sl.	Name of technologies	Number of	%	Rank
No.		farmers		
1	Spacing of host plants	189	94.5	Ι
2	Application FYM and NPK	129	64.5	VIII
3	Pruning schedule	163	81.5	IV
4	Control of stem borer	126	63.0	IX
5	Intercropping	174	87.0	II
6	Pre brushing care	148	74.0	VIII
7	Early stage silkworm rearing	173	86.5	III
8	Biological control of uzi fly	79	39.5	Х
9	Lahdoi	162	81.0	V
10	Improved mountage	156	78.0	VI
11	Mother moth examination	49	24.5	XII
12	Egg surface disinfection	67	33.5	XI

 Table 4.3.1: Distribution of respondents according to their knowledge level on selected improved technologies of muga culture (N=200)

Figure 4.3.1: Distribution of respondents according to their knowledge level on selected improved technologies of muga culture

4.4: Association between socio-economic characteristics of muga farmers and their knowledge level about improved technologies of muga culture

In the present investigation, an attempt was made to ascertain the relationship between selected personal and socio-economic variables of muga farmers and their knowledge level about the improved technologies. Results of different analysis are presented below.

4.4.1 Correlation Test: The results of correlation analysis presented in Table 4.4.1 and Figure 4.4.1 revealed that socio-economic characteristics of the farmers namely age, land holding, experience and extension participation had positive and significant relationship with the knowledge level of improved technologies of muga culture. Seri income was found to be positive relationship with the knowledge level but not significant. On the other hand, socio-economic characteristics of the farmers namely education, family size and mass media participation had negative relationship with the knowledge level on improved technologies of muga culture.

Variable code	Independent Variables	Correlation
		coefficient (r)
X ₁	Age	0.983**
X ₂	Education	0.082
X ₃	Family size	-0.085
X ₄	Sericulture income	0.147
X ₅	Land holding	0.249*
X ₆	Experience	0.975**
X ₇	Mass media participation	-0.034
X ₈	Extension participation	0.991**

 Table 4.4.1: Correlation between socio-economic attributes of muga farmers and their knowledge level on improved technologies of muga culture

****** Significant at the 0.01 level,* Significant at the 0.05 level

Figure 4.4.1: Correlation between socio-economic attributes of muga farmers and their knowledge level on improved technologies of muga culture

4.4.2 Multiple Linear Regression Co-efficient: Data presented in the Table 4.4.2, it could be observed that the regression co-efficient of the personal and socio-economic variables of the respondents namely age (X_1) and extension participation (X_8) were found highly significant at 1 per cent level among muga farmers towards knowledge level about improved technologies. While the variables experience (X_6) was found to be significant at 5 per cent level. Further, the variables like family size (X_3) , Sericulture income (X_4) and mass media participation (X_7) were found negative relationship while the variables education (X_2) and land holding (X_5) were found negatively significant relationship with the knowledge level about improved technologies.

The value of co-efficient of multiple determination (R2) was 0.968 with significant F value (12.132 **). It clearly indicates the 96.8 per cent variation in the knowledge level of the respondents was explained by all the variables put together.

Table 4.4.2: Multivariable relationship between socio-economic attributes of
muga farmers and their knowledge level on improved technology
of muga culture

		or muga curtu		
Variable	Independent	Regression	Standard	t-Value
code	Variables	Coefficient	Error	
		(B)		
	Intercept	-33.85	6.051	-5.594
X ₁	Age	0.91	0.271	3.378**
X ₂	Education	0.14	0.493	0.288
X ₃	Family size	-0.23	0.667	-0.347
X_4	Sericulture income	0.0006	0.0003	-0.241
X ₅	Land holding	0.21	0.746	0.286
X ₆	Experience	0.503	0.233	2.307*
X ₇	Mass media	-0.13	0.434	-0.309
	participation			
X ₈	Extension	6.82	0.753	9.049**
	participation			
	\mathbb{R}^2		0.968	
	F		12.132**	
	•	•		

** Significant at the 0.01 level,* Significant at the 0.05 level

4.4.3 Chi-square test: Result of Chi-square test performed to establish the relationships between socio-economic variables and knowledge of farmers about improved technologies are presented in Table 4.4.3. Relationships between different socio-economic variables with the knowledge level of farmers about improved technologies of muga culture are shown below.

Sl. No.	Variables	Chi-square value
1	Age	465.21**
2	Education	28.05
3	Family size	22.09
4	Sericulture income	115.98*
5	Land holding	17.34
6	Experience	332.87**
7	Mass media participation	25.92
8	Extension participation	319.09**

 Table 4.4.3: Association between of socio-economic variables and knowledge of farmers on improved technologies (Chi-square test)

** Significant at the 0.01 level,* Significant at the 0.05 level

Age and knowledge: The chi -square test revealed that there was a significant association at 1.0 % level between the age and knowledge level of muga farmers **Education and knowledge:** The association between the education and knowledge level was found positive among the muga farmers.

Family size and knowledge: The association between the family size and knowledge level was positive in the muga farmers.

Sericulture income and knowledge: The degree of association between Sericulture income and knowledge level indicated a positive and significant association at 5 % level.

Land holding and knowledge: The degree of association between land holdings and knowledge level had a positive among the muga farmers.

Experience and knowledge: The degree of association between experience and knowledge level had a significant association at 1 % level of muga farmers.

Mass media participation and knowledge: The association between the mass media and knowledge level was found positive among the muga farmers.

Extension participation and knowledge: The association between the extension participation and knowledge level was found to be significant at 1 % level among the muga farmers.

4.5: Adoption level of improved technologies of muga culture by the muga farmers

From the perusal of the data presented in Table 4.5.1 and Figure 4.5.1, it was clear that 51.5 per cent of the respondents had low extent of adoption about improved technologies of muga culture. A considerable amount of respondents was medium extent of adoption (27.5%) followed by high extent of adoption (21.5%) group of the improved technologies of muga culture.

Table 4.5.1: Adoption level of improved technologies by the muga farmers(N=200)

Category	Criteria	Adoption Score	Frequency	%
Low	Less than (Mean - ½ of SD)	<50.5	103	51.5
Medium	Between (Mean $\pm \frac{1}{2}$ of SD)	50.5-68.5	54	27.0
High	More than $(Mean + \frac{1}{2} \text{ of } SD)$	>68.5	43	21.5
Mean 59.5 and SD 18.0				

Figure 4.5.1: Adoption level of improved technologies of muga culture

4.6: Distribution of respondents according to their adoption level on selected improved technologies of muga culture

Distribution of respondents according to their adoption level on selected improved technologies of muga culture are presented in the Table 4.6.1 and Figure 4.6.1.

CI						т.	
SI.	Technologies	_F	ull	Pa	rtial	Non	
No.		ado	ption	ado	ption	ado	option
		Nos.	%	Nos.	%	Nos.	%
1	Spacing of host plants	128	64.0	56	23.5	16	8.5
2	Application FYM and NPK	17	8.0	87	43.5	96	48.0
3	Pruning schedule	54	27.0	84	42.0	62	31.0
4	Control of stem borer	39	19.5	63	31.5	98	49.0
5	Intercropping	47	23.5	84	42.0	69	34.5
6	Pre brushing care	111	55.5	37	18.5	52	26.0
7	Early stage silkworm rearing	57	28.5	84	42.0	59	29.5
8	Biological control of uzi fly	6	3.0	22	11.0	172	86.0
9	Lahdoi	34	17.0	78	39.0	88	44.0
10	Improved mountage	23	11.5	43	21.5	134	67.0
11	Mother moth examination	00	0.0	7	3.5	193	96.5
12	Egg surface disinfection	00	0.0	3	1.5	197	98.5
Average		43	21.5	54	27.0	103	51.5

 Table 4.6.1: Distribution of respondents according to their adoption level on selected improved technologies of muga culture (N=200)

Data presented in the table, revealed that majority of the respondents fully adopted spacing of host plants (64.0%), whereas partial and non adoption of the technology was noticed in 23.5% and 8.0% of the respondents respectively. Similarly, 55.5% of the respondents were found to fully adopt pre-brushing care,

while partial and non-adopters of the technology were observed to be 18.5% and 26.0% respectively. From the Table, it is also depicted that lesser number of the respondents fully adopted other technologies viz. early stage rearing (28.5%) followed by pruning schedule (27.0%), intercropping (23.5%), control of stem borer (19.5%), lahdoi (17.0%), improved mountage (11.5%), application of FYM and NPK (8.0%), and biological control of uzi fly (3.0%). Partial adoption of these technologies were found to be high in case of application of FYM and NPK (43.5%) followed by 42.0% each in case of pruning schedule, intercropping and early stage rearing. Partial adoption was observed 39.0%, 31.0%, 21.5% and 11.0% in the cases of lahdoi, control of stem borer, improved mountage and biological control of uzi fly respectively. No respondents were found to fully adopt two technologies namely mother moth examination and egg surface disinfection. Partial adopters of mother moth examination and egg surface disinfection were noticed in 3.5% and 1.5% of the respondents respectively. Non adoption of technologies were observed as high in egg surface disinfection (98.5%) followed by mother moth examination (96.5%), biological control of uzi fly (86.0%), improved mountage (67.0%), control of stem borer (49.0%), application of FYM and NPK (48.0%), lahdoi (44.0%), intercropping (34.5%), pruning schedule (31.0%) and early stage rearing (29.5%).

Figure 4.6.1: Distribution of respondents according to their adoption level on selected improved technologies of muga culture

4.7: Association between socio-economic characteristics of muga farmers and their adoption level of improved technologies of muga culture

The results of various test performed to establish the relationship between selected personal and socio-economic variables of muga farmer and their adoption level about the improved technologies are presented below.

4.7.1 Correlation Test: The result of correlation analysis with regard to the personal and socio-economic variables of the muga farmers and their adoption level of improved technologies are presented in Table 4.7.1 and Figure 4.7.1, revealed that socio-economic characteristics of the respondents namely age, sericulture income, land holding, experience and extension participation had positive and education had negatively significant relationship with the adoption level of improved technologies of muga culture. However, family size and mass media participation had no significant relationship with the adoption level of improved technologies of muga culture.

Variable code	Independent Variables	Correlation
		Coefficient (r)
X1	Age	0.972**
X ₂	Education	-0.945**
X ₃	Family size	-0.122
X ₄	Sericulture income	0.845**
X ₅	Land holding	0.268*
X ₆	Experience	0.899**
X ₇	Mass media participation	-0.0298
X ₈	Extension participation	0.951**

 Table 4.7.1: Correlation between socio-economic attributes of muga farmers and their adoption level of improved technologies

** Significant at the 0.01 level,* Significant at the 0.05 level

4.7.2 Multiple Linear Regression Co-efficient: Data presented in the Table-4.7.2, it could be observed that the regression co-efficient of the personal and socio-economic variables of the respondents namely age (X_1) , experience (X_6) and extension participation (X₈) were found highly significant at 1 per cent level towards adoption level of improved technologies. Further, the variables like education (X₂), family size (X₃), land holding (X₅) and mass media participation (X₇) were found negative relationship. The sericulture income (X₄) had a positive relationship with the adoption level of technologies among the farmers.

The value of co-efficient of multiple determination (R2) was 0.742 with significant F value (15.32 **). It clearly indicates the 74 per cent variation in the adoption level of the respondents was explained by all the variables put together.

Figure 4.7.1: Correlation between socio-economic attributes of muga farmers and their adoption level of improved technologies

4.7.3 Chi-square test: Result of Chi-square test performed to establish the relationships between socio-economic variables and improved technologies adoption level of the farmers are presented in Table 4.7.3. Relationships between different socio-economic variables with the knowledge level of farmers about improved technologies of muga culture are shown below.

Age and adoption: The chi-square test revealed that there was a significant association at 1 % level between the age and improved technology adoption level of muga farmers

Variable	Independent Variables	Regression	Standard Error	t-Value
coue	v arrables	(B)	LIIUI	
	Intercept	-20.59	12.226	-1.684
X ₁	Age	1.309**	0.299	4.379
X ₂	Education	-0.887	1.855	-0.478
X ₃	Family size	-0.536	0.692	-0.774
X ₄	Sericulture income	0.0006	0.0008	0.645
X ₅	Land holding	-1.181	0.782	-1.509
X ₆	Experience	1.920**	0.194	3.106
X ₇	Mass media participation	-0.007	0.461	-0.015
X ₈	Extension participation	2.729**	0.979	2.786
	R^2		0.742	
	F		15.32**	

Table 4.7.2: Multivariable relationship between socio-economic attributes ofmuga farmers and their adoption level

** Significant at the 0.01 level,* Significant at the 0.05 level

Education and adoption: The association between the education and improved technology adoption level was found positive in muga farmers.

Family size and adoption: The association between the family size and improved technology adoption level was found positive among the muga farmers. **Income and adoption:** The degree of association between income and improved technology adoption level indicated a positive and significant association at 1 % level of significance among the muga farmers.

Land holding and adoption: The degree of association between land holdings and improved technology adoption level had a positive among the muga farmers.

Experience and adoption: The degree of association between experience and improved technology adoption level had a significant association at 5 % level in among the muga farmers.

Mass media participation and adoption: The association between the mass media and improved technology adoption level was found positive among the muga farmers.

Extension participation and adoption: The association between the extension participation and improved technology adoption level was found to be significant at 5 % level in muga farmers.

Sl. No.	Variables	Chi square value
1	Age	366.25**
2	Education	49.74
3	Family size	44.23
4	Sericulture income	303.84**
5	Land holding	23.07
6	Experience	204.58 *
7	Mass media participation	58.58
8	Extension participation	150.268 *

 Table 4.7.3: Association between of socio-economic variables of the farmers and adoption of improved technologies (Chi-square test)

** Significant at the 0.01 level,* Significant at the 0.05 level

4.8: Traditional practices of muga culture

In the present investigation, an effort was made to know about the traditional practices followed by the muga farmers during various activities of muga culture. The most common traditional practices of muga culture strictly followed by the farmers are presented in tabular form under following sub heads.

4.8.1 Selection of Healthy Brood : Prior to selection of a healthy brood of silkworm, the farmers strictly observed various symptoms and behaviours from egg to adult (moth) stages to assure better production of cocoon in the subsequent

crop. Various symptoms and characters were found to observe by the muga farmers in different stages of the life cycle of muga are stated in Table 4.8.1.

Table 4.8.1: Selection criterion of healthy brood of muga silkworm in
traditional method

Sl. No.	Stages	Symptoms/ characters of healthy brood of					
		muga silkworm					
1	Newly hatched	Quick movement of newly hatched worms to the					
	worms	leaf surface					
2	Larval stage	 i) Prompt movement of 4th and 5th stage larvae during day time ii) Light green body color and uniform growth (Plate 18) iii) Copper colour head (Plate 19) 					
		iv) Free from diseases and no mortality					
		 v) Feeding of entire leaf (start feeding from the leaf apex to the leaf midrib and following up to the leaf stalk (Plate 20) vi) Instantaneous response while touch and possessed more than one solid form of excreta in fifth stage larvae 					
3	Cocoon/ pupal	i) Uniform size, compact and bright cocoon					
	stages	 shell (Plate 21) ii) Alive pupae with pointed posterior end. (Plate 22) iii) Light chocolate colour of pupae 					
4	Adult stage	i) Peak emergence at the evening					
		ii) Deep brown colour of wings (Plate 23 and 24)iii)Alive moths for 5-6 days after egg laying					
5	Egg stage	i) Uniform egg laying around the <i>Khorika</i> (Plate 25)ii) Brown colour of eggs without any depression.					

4.8.2: Disinfection: Prior to use appliances of rearing and seed production and the grainage house, disinfection is very essential to prevent various diseases of

silkworm during rearing. Traditional methods of disinfection followed by the farmers are cited in Table 4.8.2.

Sl. No.	Activities	Techniques
1	Disinfection of	Once the activities are over, all the appliances
	appliances	used in silkworm seed production and
		rearing, like chakari pera, khorika, chaloni
		etc were kept over the kitchen fire till further
		used to kill the germs of diseases (Plate 26)
2	Disinfection of	i) Splashed floor and walls of the grainage
	grainage house (a	house with cow dung mixed mud prior to
	house where silk	enter seed cocoons
	worm eggs are	ii) Hanged up leaves and twigs of Tulsi
	produced)	(Ocimum sanctum) at the walls of the
		grainage house
		iii) Sprayed Tulsi leaf concoction on the floor
		and walls of grainage house during
		grainage

 Table 4.8.2:
 Traditional methods of disinfection followed by muga farmers

4.8.3: Silkworm seed production: The traditional methods followed during silkworm seed production are presented in the Table 4.8.3.

 Table 4.8.3: Traditional methods of silkworm seed production

Sl. No.	Activities	Techniques								
1	Preservation of seed	i) Seed cocoon preserved at perforated								
	cocoons	bamboo cage locally called 'chakari pera'								
		in single layer (Plate 27)								
		ii) During winter, the seed cocoons were kept								
		near the kitchen fire and exposed in to								
		sunlight for early emergence of moths								
		(Plate 28).								

Coupling of moths	i) Moths were allowed to couple naturally
	before midnight at least for 10-12 hours.
	The hind wings of female moths of each
	pair are tied in "kharika" (bunch of dry
	thatch grass) with the help of cotton thread
	(Plate 29). Sometimes more than one pair
	of moths are tied at the same kharika to
	minimize the quantity of kharikas and
	space.
	ii) The kharikas along with the moths are
	hanged in a rope and allowed the moths to
	lay eggs At the time of shortage of male
	moths, the female moths were tied in
	khorikas and hanged it on branches of
	plants or bamboos in outside to allow
	coupling with wild male moths at night
Depairing of moths	After 10-12 hours of pairing, paired moths
	were exposed to smoke produced through
	burning of paddy straw for a few minutes
	at the evening for decoupling (Plate 30).
Egg laying and egg	i) Moths were allowed to lay eggs for
preservation	maximum three days. After three days of
	egg laying, female moths were removed
	from the kharika and the eggs along with
	khorikas were kept in dark and shady place
	until hatching (Plate 31).
	ii) Used to hang of tulsi leaves/twigs with the
	kharikas to prevent disease outbreaks
	during rearing (Plate 32)
	Coupling of moths Depairing of moths Egg laying and egg preservation

4.8.4: Silkworm rearing: The traditional methods of muga silkworm rearing and cocoon harvesting techniques followed by the farmers are presented in the Table 4.8.4.

Sl. No.	Activities	Techniques								
1	Selection of host plants	i) The <i>nahorpotia</i> leaves (resemble with the								
	for rearing of muga	leaves of Indian iron wood (Mesua								
	silkworms	ferrea) of som trees were selected for								
		rearing of muga silkworm (Plate 33)								
		 ii) Sometimes, newly hatched worms were brushed at Dighlati plants (<i>Litsea</i> salicifolia) to reduced disease of silkworm (Plate 34) 								
2	Pre brushing care	i) Cleaned up of dry leaves and twigs of the								
		selected plants before brushing of								
		silkworm. Burnt dry leaves,								
		undergrowths, twigs and debris in the								
		rearing field to repel pests and predators								
		of silkworms through smoking (Plate 35)								
		ii) Used rotten fish or dead birds or frog to								
		control red ants nested in the host plants								
		before brushing (Plate 36).								
3	Brushing of worms	On the day of hatching, <i>khariks</i> ' with the								
		hatched worms were hanged on twigs								
		plants or tied at the tree trunk of the								
		selected host (Plate 37).								
4	Griddle around the host	The tree trunks of the host plants were								
	plants	wrapped at 2/3 feet above the ground by								
		pseudo stems of banana plants or bunch								
		of thatch grass to check the worms crawl								
		down to ground (Plate 38).								

 Table 4.8.4: Traditional methods of muga silkworm rearing

~	T C C	
5	Transfer of worms	1) At the time of finish the leaf of one host
		plants, the worms crawl down to tree
		trunk for searching leave at another plant.
		At that time, the farmers picked the
		worms and put at another plants having
		with quality leaves. Transfer of worms
		from one plants to another were done
		generally at third or fourth stage with the
		help of triangular trays made up of
		bamboo called 'Chaloni' (Plate 39)
		ii) At the time of transferring worms,
		weekend worms were sorted out and put
		them to other plants having tender leaves
		for quick growing.

4.8.5: Traditional mountage, harvesting and stifling of cocoons: The traditional system involved for mounting mature worms to spin cocoons, harvesting of cocoons and stifling of cocoons are presented in the Table 4.8.5.

Sl. No.	Activities			Techniques
Sl. No. 1	Activities Mounting worms	of	ripen	 Techniques i) The ripen worms collected at evening with the help of bamboo basket and put them in to mountage (farmers termed as 'jail') for cocooning. ii) The jails were prepared by semi dry leave and twigs of certain plants locally named as <i>nahor</i> (<i>Mesua ferrea</i>), <i>hingori</i> (<i>Castanopsis</i> sp.), <i>azar</i> (<i>Lagerstroemia speciosa</i>). <i>bhomlati</i> (<i>Celastrus</i>)
				monospermus), etc (Plate 40)

		iii) Jails were kept in open and well-aerated
		shed prepared temporarily in the rearing
		field itself and keep watch for protection
		from birds, lizards, bats, owl, snake, etc.
2	Harvesting of cocoons	i) After 6-7 days in summer and 8-12 days
		in winter of spinning, the cocoons were
		harvested (Plate 41).
		ii) After harvesting, the flimsy and melted
		cocoons were sorted out. The cocoons,
		which are used as seed, were kept in
		shady places with utmost care and other
		cocoons used for reeling purpose were
		stifled immediately to kill the pupae.
3	Stifling of cocoons	The cocoons are exposed in to bright
		sunlight or hot smoke generate by
		burning of fire wood for stifling (Plate
		42). After dying of pupae, farmer also
		used to expose the cocoons in sunlight for
		2-3 days to reduce the moisture contents
		of the cocoons as well as pupae.
1		

4.9: Cocoon yield under traditional practices and improved technologies of muga culture

Performances of muga silkworm seed and commercial crops in terms cocoon yield and ERR under traditional and improved practices are presented in Table 4.9.1 to 4.9.4. Graphical representation of yield data in both the seed and commercial crops are presented in Figure 4.9.1 and 4.9.2. Data presented in the Table 4.9.1, it could be observed that average cocoon yield per laying in Chatua and Bhadia seed crops during 2014 under traditional practice was 31 and 20 with the ERR of 28.48 and 26.93 percent respectively. Similarly, the average cocoon yield per laying in Chatua and Bhadia seed crops during 2014 under traditional practice was 31 and 20 with the ERR of 28.48 and 26.93 percent respectively. Similarly, the average cocoon yield per laying in Chatua and Bhadia seed crops during 2015 under traditional

practice was 37 and 19 with the ERR of 33.45 and 26.51 percent respectively. On the other hand, it could be observed from the Table 4.9.2 that average cocoon yield per dfl in Chatua and Bhadia seed crops during 2014 under improved practice was 47 and 42 with the ERR of 41.80 and 58.93 percent respectively. Similarly, the average cocoon yield per laying in Chatua and Bhadia seed crops during 2015 under improved practice was 45 and 24 with the ERR of 40.53 and 33.45 percent respectively.

Data presented in the Table 4.9.3, it was found that in traditional practice, the average cocoon yield per laying in Jethua and Kotia commercial crops during 2014 was 49 and 43 with the ERR of 43.43 and 58.95 percent respectively. Similarly, the average cocoon yield per laying in Jethua and Kotia commercial during 2015 was 47 and 43 with the ERR of 42.21 and 60.40 percent respectively. On the other hand, data presented in the Table 4.9.4, it could be observed that in improved practice, the average cocoon yield per dfl in Jethua and Kotia commercial crops during 2015 was 62 and 58 with the ERR of 55.28 and 68.92 percent respectively. Similarly, the average cocoon yield per dfl in Jethua and Kotia commercial during 2015 was 65 and 52 with the ERR of 58.2 and 62.4 percent respectively.

The t-test conducted for equality of variance in ERR between traditional and improved practices, it was observed that t- test was highly significant at 1 & 5% level of significance in all the seed and commercial crops in both the years (Table 4.7.6, 4.7.8, 4.7.10 and 4.7.12). Hence, there is a clear difference of yield between the improved and traditional practice of muga culture. In other sense, it could be depicted from the results of descriptive statistics presented in Table 4.7.5, 4.7.7, 4.7.9 and 4.7.11 that improved practice was better than traditional practice in terms of cocoon yield and ERR in muga culture.

Crops	Number of	Layings brushed	Fecundity (Nos.)	Hatch ing	Worms brushed	Loss of worms due	Loss of worms due	Other loss of	Cocoon yield	Cocoon yield/	ERR (%)
	farmers	(Nos.)		(%)	(Nos.)	to incidence	to incidence	worms	(Nos.)	laying	
						of pest	of diseases	(%)		(Nos.)	
						(%)	(%)				
Chatua Seed	30	244	135	80	26352	18.5	32.0	21.0	7505	31	28.48
crop 2014											
Bhadia Seed	30	234	120	62	17410	16.6	33.8	22.7	4689	20	26.93
crop 2014											
Chatua Seed	30	212	140	80	23744	16.5	36.5	13.6	7942	37	33.45
crop 2015											
Bhadia Seed	30	206	122	60	15079	15.0	29.8	28.7	3997	19	26.51
crop 2015											

 Table 4.9.1: Average performance of muga seed crops in different seasons under traditional practice

Crops	Number	Dfls	Fecundity	Hatch	Worms	Loss of	Loss of	Other	Cocoon	Cocoon	ERR
	of	brushed	(Nos)	ing	brushed	worms due	worms due	loss of	yield	yield	(%)
	farmers	(g)		(%)	(Nos.)	to incidence	to incidence	worms	(Nos.)	per dfl	
						of pest	of diseases	(%)		(Nos.)	
						(%)	(%)				
Chatua Seed	30	250	140	80	28000	14.0	22.8	21.4	11704	47	41.80
crop 2014											
Bhadia Seed	30	233	120	60	16776	11.4	13.2	16.5	9886	42	58.93
crop 2014											
Chatua Seed	30	230	140	80	25760	12.0	26.5	21.0	10441	45	40.53
crop 2015											
Bhadia Seed	30	221	120	60	15912	14.6	28.0	24.0	5323	24	33.45
crop 2015											

 Table 4.9.2: Average performance of muga seed crops in different seasons under improved practice

Crops	Number	Layings	Fecundity	Hatch	Worms	Loss of	Loss of	Other	Cocoon	Cocoon	ERR
	of	brushed	(Nos.)	ing	brushed	worms due	worms due	loss of	yield	yield	(%)
	farmers	(Nos.)		(%)	(Nos.)	to incidence	to incidence	worms	(Nos.)	per dfl	
						of pest	of diseases	(%)		(Nos.)	
						(%)	(%)				
Jethua	30	312	140	80	34981	15.5	19.7	21.4	15172	49	43.4
commercial											
crop 2014											
Kotia	30	257	120	60	18504	10.7	12.8	17.6	10940	43	58.9
commercial											
crop 2014											
Jethua	30	225	140	80	25237	14.5	24.7	18.6	10763	47	42.2
commercial											
crop 2015											
Kotia	30	244	120	60.0	17592	11.0	10.0	18.2	10757	43	60.4
commercial											
crop 2015											

 Table 4.9.3: Average performance of muga commercial crop in different seasons under traditional practice

Crops	Number	Dfls	Fecundity	Hatch-	Worms	Loss of	Loss of	Other	Cocoon	Cocoon	ERR
	of	brushed	(Nos)	ing	brushed	worms due	worms due	loss of	yield	yield	(%)
	farmers	(g)		(%)	(Nos.)	to incidence	to incidence	worms	(Nos.)	per dfl	
						of pest	of diseases	(%)		(Nos.)	
						(%)	(%)				
Jethua	30	325	140	80	36400	8.6	15.8	20.3	20099	62	55.3
commercial											
crop 2014											
Kotia	30	279	140	60	23464	7.2	5.5	18.4	16160	58	68.9
commercial											
crop 2014											
Jethua	30	309	140	80	34571	8.8	14.8	18.1	20072	65	58.2
commercial											
crop 2015											
Kotia	30	278	140	60	23338	8.3	11.3	17.9	14333	52	62.4
commercial											
crop 2015											

Table 4.9.4: Average performance of muga commercial crops in different seasons under improved practice

Figure 4.9.1: Muga seed crops performance under traditional and improved practice in different seasons

Figure 4.9.2: Muga commercial crops performance under traditional and improved practice in different seasons

Crops	Practices	Number	Mean	Standard	Standard				
				Deviation	Error				
					Mean				
Chatua Seed	Traditional	30	28.48	9.15579	1.67161				
2014	Improved	30	41.80	9.87636	1.80317				
Chatua Seed	Traditional	30	33.45	13.72900	2.50656				
2015	Improved	30	40.53	7.22803	1.31965				
Pooled	Traditional	30	30.96	9.05176	1.65262				
	Improved	30	41.16	6.64603	1.21339				

 Table 4.9.5: Descriptive statistics on ERR of Chatua Seed crops under traditional and improved practice

 Table 4.9.6: t- Test for Equality on ERR of Chatua Seed crops under traditional and improved practice

Crops	t-test							
	t	Degree of	Significant Mean		Standard			
		Freedom	(2-tailed)	Difference	Error			
Chatua Seed	-5.419	58	.000**	-13.32333	2.45880			
2014								
Chatua Seed	-2.501	58	.015*	-7.08333	2.83272			
2015								
Pooled	-4.975	58	.000**	-10.20067	2.05024			

** Significant at 1% level, * Significant at 5% level

Table 4.9.7: Descriptive statistics on ERR of Bhodia Seed crops under
traditional and improved practice

Crops	Practices	Number	Mean	Standard	Standard
				Deviation	Error Mean
Bhodia Seed	Traditional	30	26.92	9.66758	1.76505
2014	Improved	30	58.93	10.72449	1.95801
Bhodia Seed	Traditional	30	26.51	10.52517	1.92162
2015	Improved	30	33.45	10.42581	1.90348
Pooled	Traditional	30	26.72	7.98935	1.45865
	Improved	30	46.19	7.95449	1.45228

			· · · ·					
Crops	t-test							
	t	t Degree of Significant Mean St						
		Freedom	(2-tailed)	Difference	Error			
Bhodia Seed 2014	-12.140	58	.000**	-32.00333	2.63614			
Bhodia Seed 2015	-13.835	58	.000**	-37.42000	2.70479			
Pooled	-16.861	58	.000**	-34.70667	2.05835			

Table 4.9.8: t- Test for Equality on ERR of Bhodia Seed crops under
traditional and improved practice

** Significant at 1% level

 Table 4.9.9: Descriptive statistics on ERR Jethua Commercial crops under traditional and improved practice

Crops	Practices	Number	Mean	Standard	Standard
				Deviation	Error
					Mean
Jethua	Traditional	30	43.43	12.07551	2.20468
Commercial					
2014	Improved	30	55.28	7.04250	1.28578
Jethua	Traditional	30	42.21	9.26047	1.69072
Commercial					
2015	Improved	30	58.20	7.81312	1.42647
Pooled	Traditional	30	42.82	7.37568	1.34661
	Improved	30	56.74	5.64553	1.03073

 Table 4.9.10: t- Test for Equality on ERR of Jethua Commercial crops under traditional and improved practice

Crops	t-test							
	t Degree of		Significant	Mean	Standard			
		Freedom	(2-tailed)	Difference	Error			
Jethua								
Commercial	-4.644	58	.000**	-11.85333	2.55222			
2014								
Jethua								
Commercial	-7.227	58	.000**	-15.98667	2.21210			
2015								
Pooled	-8.210	58	.000**	-13.92300	1.69581			

** Significant at 1% level

Crops	Practices	Number	Mean	Standard	Standard	
				Deviation	Error	
					Mean	
Kotia	Traditional	30	58.95	14.27367	2.60600	
2014	Improved	30	68.92	6.76224	1.23461	
Kotia Commorcial	Traditional	30	60.40	10.46327	1.91032	
2015	Improved	30	62.39	10.73842	1.96056	
Pooled	Traditional	30	59.68	8.63966	1.57738	
	Improved	30	65.65	7.30488	1.33368	

Table 4.9.11: Descriptive statistics on ERR of Kotia Commercial cropsunder traditional and improved practice

Table 4.9.12: t- Test for Equality on ERR of Kotia Commercial cropsunder traditional and improved practice

Crops	t-test							
	t	Degree of	Significant	Mean	Standard			
		Freedom	(2-tailed)	Difference	Error			
Kotia	-3.459	58	.001**	-9.97333	2.88366			
Commercial								
2014								
Kotia	726	58	.471	-1.98667	2.73736			
Commercial								
2015								
Pooled	-2.896	58	.005**	-5.98233	2.06563			

** Significant at 1% level

Crops	Practices	Number	Mean	Standard	Standard
				Deviation	Error Mean
Chatua Seed	Traditional	30	28.48	9.15579	1.67161
2014	Improved	30	41.80	9.87636	1.80317
Bhodia Seed	Traditional	30	26.93	9.66758	1.76505
2014	Improved	30	58.93	10.72449	1.95801
Jethua 2014	Traditional	30	43.43	12.07551	2.20468
	Improved	30	55.28	7.04250	1.28578
Kotia	Traditional	30	58.95	14.27367	2.60600
Commercial 2014	Improved	30	68.92	6.76224	1.23461
Chatua Seed	Traditional	30	33.45	13.72900	2.50656
2015	Improved	30	40.53	7.22803	1.31965
Bhodia Seed	Traditional	30	26.51	10.52517	1.92162
2015	Improved	30	33.45	10.42581	1.90348
Jethua	Traditional	30	42.21	9.26047	1.69072
Commercial 2015	Improved	30	58.20	7.81312	1.42647
Kotia	Traditional	30	60.40	10.46327	1.91032
Commercial 2015	Improved	30	62.39	10.73842	1.96056
Chatua Seed	Traditional	30	30.96	9.05176	1.65262
Pooled	Improved	30	41.16	6.64603	1.21339
Bhodia Seed	Traditional	30	26.72	7.98935	1.45865
Pooled	Improved	30	46.19	7.95449	1.45228
Jethua	Traditional	30	42.82	7.37568	1.34661
Commercial Pooled	Improved	30	56.74	5.64553	1.03073
Kotia	Traditional	30	59.67	8.63966	1.57738
Commercial Pooled	Improved	30	65.65	7.30488	1.33368

Table 4.9.13: Summarized ERR variations of seed and commercial crops in
traditional and improved practice

Crops	t-test							
	t	Degree of	Significant	Mean	Standard			
		Freedom	(2-tailed)	Difference	Error			
Chatua Seed	-5.419	58	.000	-13.32333	2.45880			
2014								
Bhodia Seed	-12.140	58	.000	-32.00333	2.63614			
2014								
Jethua	-4.644	58	.000	-11.85333	2.55222			
Commercial								
2014								
Kotia	-3.459	58	.001	-9.97333	2.88366			
Commercial								
2014								
Chatua Seed	-2.501	58	.015	-7.08333	2.83272			
2015								
Bhodia Seed	-13.835	58	.000	-37.42000	2.70479			
2015								
Jethua	-7.227	58	.000	-15.98667	2.21210			
Commercial								
2015				1.00.1.5				
Kotia	726	58	.471	-1.98667	2.73736			
Commercial								
2015	4.075	50	000	10 200 (7	2.0502.4			
Chatua Seed	-4.975	58	.000	-10.20067	2.05024			
Pooled	16.061	50	000	24 70667	2.05925			
Bhodia Seed	-16.861	58	.000	-34./066/	2.05835			
Pooled	0.010	50	000	12 02200	1 (0591			
Jethua	-8.210	58	.000	-13.92300	1.69581			
Doolod								
Kotia	2 806	50	005	5 09222	2 06562			
Commercial	-2.890	30	.005	-3.98233	2.00303			
Dooled								
rooled								

Table 4.9.14: Summarization of t- Test result on ERR of Seed andCommercial crops under traditional and improved practice.

4.10: Economics of muga cocoon yield under traditional and improved practices

In order to assess the economics, the cost of cocoon yield both in traditional and improved practices were calculated based on the actual expenditures and prevailing market rate of different items. The calculated cost of coccon yield under traditional and improved practice at farmers level are presented in the Table 4.10.1, 4.10.2, 4.10.3 and 4.10.4.

Table 4.10.1: Calculated annual cost of muga seed cocoon yield undertraditional methods (Unit area: 1.0 acre)

Particulars	Unit	Quantity	Rate	Amount
			(Rs)	(R s)
A. Plantation maintenance				Nil
B. Rearing appliances			1	
Temporary shed (Tarpaulin,	Lump-	1	-	1500
bamboo, rope, etc)	sum			
Bamboo chaloni for transferring	No.	30	15	450
worms				
Rearing net	No.	0	0	0
Bamboo for erection of nylon	No.	0	0	0
nets				
Bamboo box type mountage	No.	0	0	0
Plastic basin/bucket	No.	4	150	600
Bamboo baskets	No	4	200	800
Torch light	No	2	300	600
Farm appliances (Dao, Spade,	Lump-	-		600
etc)	sum			
Subtotal (B)				4550
20% depreciation cost of (B)				910
C. Rearing cost				
Cost of layings production	Nos	448	10	4480
(Including transportation of				
seed cocoons, grainage				
appliances, labour, etc)				
Disinfectants	Lump-			0
	sum			
Human labour	No	70	200	14000
Miscellaneous	Lump-			500
	sum			
Subtotal				18980
Total Cost (B+C)				19890
Say				19900

Particulars	Unit	Quantity	Rate (Rs)	Amount (Rs)
(A) Plantation maintenance			(103)	(13)
(Av. number of plants 300)				
Urea (@ 80 g per plant)	kg	24	8	192
SSP (@ 120 g per plant)	kg	36	8	288
MOP(@ 30 g per plant)	kg	9	10	90
FYM(@ 10 kg/plant)	cft	600	8	4800
Cost of insecticides/pesticides	Lump			300
-	-sum			
Human labour for cultural	No.	6	200	1200
operation and application of				
inputs, insecticides/ pesticides, etc				
Subtotal (A)				6870
(B) Rearing appliances				
Temporary shed (Tarpaulin,	Lump	1	-	1500
bamboo, rope, etc)	-sum			
Bamboo chaloni for transferring	No.	30	15	450
worms				
Rearing net	No.	2	3500	7000
Bamboo for erection of nylon nets	No.	8	120	960
Bamboo made box mountage	No.	10	700	7000
Plastic basin/bucket	No.	4	150	600
Bamboo baskets	No	4	200	800
Torch light	No	2	300	600
Farm appliances (Dao, Spade, etc)	Lump	-		600
	-sum			
Subtotal (B)				19510
20% Depreciation cost of (B)				3902
(C) Recurring expenditure of rea	ring	1		
Cost of dfls	g	467	8	3736
Disinfectants	Lump			400
	-sum			
Human labours	No	50	200	10000
Miscellaneous	Lump			500
	-sum			
Subtotal (C)				14636
Total Cost (A+B+C)				25408
Say				25400

Table 4.10.2: Calculated annual cost of muga seed cocoon yield underimproved technology (Unit area: 1.0 acre)

Table 4.10.3: Annual cost of muga commercial cocoon yi	eld under
traditional methods (Unit area: 1.0 acre)	

Particulars	Unit	Quantity	Rate (Rs)	Amount (P s)
A. Plantation maintenance			(115)	(K 5) Nil
B. Rearing appliances				
	_		1	
Temporary shed (Tarpaulin,	Lump	1	-	1500
bamboo, rope, etc)	-sum			
Bamboo chaloni for transferring worms	No.	30	15	450
Rearing net	No.	0	0	0
Bamboo for erection of nylon nets	No.	0	0	0
Bamboo box type mountage	No.	0	0	0
Plastic basin/bucket	No.	4	150	600
Bamboo baskets	No	4	200	800
Torch light	No	2	300	600
Farm appliances (Dao, Spade, etc)	Lump	-	-	600
	-sum			
Subtotal (B)				4550
20% depreciation cost of (B)				910
C. Recurring expenditure of				
rearing				
Cost of layings production	Nos	518	10	5180
(Including transportation of seed				
cocoons, grainage appliances,				
labour, etc)	-			
Disinfectants	Lump	-	-	0
	-sum		• • • •	1 7 0 0 0
Human labour	No	75	200	15000
Miscellaneous	Lump	-	-	500
<u> </u>	-sum			
Subtotal				20680
Total cost (B+C)				21590
Say				21600

Particulars	Unit	Quantity	Rate (Rs)	Amount (Rs)
A. Plantation maintenance (Av.				
number of plants 300)				
Urea (@ 80 g per plant)	kg	24	8	192
SSP (@ 120 g per plant)	kg	36	8	288
MOP(@ 30 g per plant)	kg	9	10	90
FYM(@ 10 kg/plant)	cft	600	8	4800
Cost of insecticides/pesticides	Lump			300
	-sum			
Human labour for cultural	No.	6	200	1200
operation and application of				
inputs, insecticides/ pesticides, etc				
Subtotal (A)				6870
(D) Rearing appliances	-			
Temporary shed (Tarpaulin,	Lump	1	-	1500
bamboo, rope, etc)	-sum			
Bamboo chaloni for transferring	No.	30	15	450
worms				
Rearing net	No.	2	3500	7000
Bamboo for erection of nylon nets	No.	8	120	960
Bamboo made box mountage	No.	10	700	7000
Plastic basin/bucket	No.	4	150	600
Bamboo baskets	No	4	200	800
Torch light	No	2	300	600
Farm appliances (Dao, Spade, etc)	Lump	-		600
	-sum			
Subtotal (B)				19510
20% Depreciation cost of (B)				3902
(E) Recurring expenditure of rea	ring	1	1	
Cost of dfls	g	596	8	4768
Disinfectants	Lump			400
	-sum			
Human labours	No	65*	200	13000
Miscellaneous	Lump			500
	-sum			
Subtotal (C)				18668
Total Cost (A+B+C)				29440
Say				29500

Table 4.10.4: Annual cost of muga commercial cocoon yield underimproved technology (Unit area: 1.0 acre)

The data presented in the table, it could be seen that the calculated cost of cocoon production Rs.19900.00 in seed and Rs. 21600.00 in commercial crop (table 4.10.1 and 4.10.3) was low in traditional practice than the cost of cocoon production Rs. 25400.00 in seed and Rs. 29500.00 in commercial crop under improved technology (table 4.10.2 and 4.10.4). But, benefit cost ratio in traditional practice was not as good as improved technology due to low yield of cocoons in both the seasons. From the Table 4.10.5 and 4.10.6, it could be seen that the net return from cocoon yield was Rs. 2020 in seed and Rs. 17623 in commercial crop under traditional practice annually. On the other hand, net return from the cocoon yield was Rs. 13297 in seed and Rs. 33301 in commercial crop under improved practices. The calculated benefit cost ratio under traditional practice was 1: 0.10 and 1: 0.80 in seed and commercial crop respectively. Calculated benefit cost ratio under improved practice was 1: 0.52 in seed and 1: 1.30 in commercial crop whice was higher than traditional practice.

 Table 4.10.5: Economics of muga seed crops under traditional and improved practices (Unit area: 1.0 acre)

Sl.	Particulars	Traditional	Improved
No		Practice	practice
1	Number of crops reared anuually	2	2
2	quantity of layings/ dfls brushed	448 nos	467g
	annually (nos/g)		
3	Annual cocoon yield (nos)	12067	18677
4	Return from sale proceeds of cocoon		
	(Rs.)		
	i) Sale proceeds of seed cocoons (@	21720	33619
	60% of total yield and Rs 3.00 per		
	cocoon)		
	ii) Sale proceeds of reeling cocoon	7240	11206
	(@ 40% of the total yield and		
	Rs.1.50 per cocoon)		
	Gross return (i + ii)	28960	44825
5	Annual cost of cocoon production	19900	25400
	(Rs.)		
6	Net return (Rs.)	2020	13297
7	Benefit Cost Ratio (BCR)	1:0.10	1:0.52

Sl.	Particulars	Traditional	Improved
No		Practice	practice
1	Number of crops reared anuually	2	2
2	quantity of layings/ dfls brushed annually (nos/g)	518 nos	596g
3	Annual cocoon yield (nos)	22196	35332
4	Return from sale proceeds of cocoon (Rs.)		
	i) Sale proceeds of commercial cocoons (@ Rs 2.00 per cocoon of 80% of the total yield)	35513	56851
	 ii) Sale proceeds of flimsy cocoon (@ lump sum 350/- per kg and approximately 10.6 kg in traditional and17 kg in improved practice) 	3710	5950
	Gross return (i + ii)	39223	62801
5	Annual cost of cocoon production	21600	29500
	(Rs.)		
6	Net return (Rs.)	17623	33301
7	Benefit Cost Ratio (BCR)	1:.80	1:1.30

 Table 4.10.6: Economics of muga commercial crops under traditional and improved practices (Unit area: 1.0 acre)

4.11: Constraints for partial and non-adoption of improved technologies by the muga farmers

The most serious constraints for low and non adoption of improved practices of muga culture are presented in the Table 4.11.1 and Figure 4.11.1. The table indicated that the muga farmers in the study area were facing number of constraints that restricted their action towards adoption of improved practices. It was evident from the table that inclination towards traditional practice (WMS 2.43), lack of knowledge (WMS 1.80) and non availability of silkworm seeds on time (WMS 1.69) were the most serious constraint and they were ranked as I, II and III respectively. Based on the WMS, other constraints were non remunerative (ranked IV), lace of time (ranked V), non availability of materials (ranked VI), high cost & labour

intensive (ranked VII), non availability of own farm (ranked IX) and marketing of cocoons (ranked X).

Table 4.11.1: Constraints of muga farmers for low and non adoption of
improved technology

Sl.	Constraints	Weighted	Rank
No.		Mean Score	
1	Lack of knowledge	1.80	II
2	Lack of time	1.61	V
3	Non availability of materials	1.57	VI
4	High cost	1.53	VII
5	Inclination towards traditional	2.43	Ι
	practice		
6	Non remunerative	1.64	IV
7	Non availability of silkworm	1.69	III
	seeds on time		
8	Labour intensive	1.53	VII
9	Non availability of own farm	1.42	IX
10	Marketing of cocoon	1.18	Х

Figure 4.11.1: Constraints of muga farmers for low and non adoption of improved technology of muga culture