
1 
 

 

 

 

 

 

 

 

Chapter-I 

Introduction 

 

 

 

 

 

 



2 
 

1.1 Background of Fluid Mechanics: 

The science of fluid Mechanics began to develop into two divergent 

branches which had practically no points in common and they were the Theoretical 

Hydrodynamics and the other was Science of Hydraulics. The theoretical 

hydrodynamics developed from solutions of Euler’s equation of motion for various 

flow configurations of frictionless or non-viscous fluid past obstacles like cylinders, 

spheres, through pipes, channels and against disk. However, the results of such 

studies did not agree with the experimental results as regards to the pressure losses 

in pipes and channels, as well as with regard to the drag of the body which moves 

through a mass of fluid. The most glaring departure of the result of this subject from 

reality being that leading to d’ Alembert’s paradox that is, to the statement that a 

body which moves uniformly through a fluid which extends to infinity experiences 

no drag whereas a body experiences moving through any real fluid. On the other 

hand, the science of hydraulics was mainly developed by the practical engineers for 

the need to solve the important problems arising from progress in technology. Here 

the equations were generally empirical, without much theoretical content. The 

science of hydraulics was based on a large number of experimental data and 

differed greatly in its method and in its objects from the theoretical hydrodynamics. 

Towards the end of nineteenth century, the equations of motion of a viscous 

fluid were established by Navier (1823), Poisson (1831), Saint-Venant (1843) and 

Stokes (1845) and these are known as Navier-Stokes equations. But these equations 

being non-linear partial differential equations for the cases where either the non-

linear terms vanish identically or the equation of motion can be reduced to ordinary 

differential equations by taking recourse to Laplace transformation or to some 

suitable similarity transformations. Stokes (1851) investigated the case of parallel 

flow past a sphere for the limiting case when the viscous forces are considerably 

greater than the inertia forces and so the non-linear terms in the Navier-Stokes 

equations are neglected. Oscen (1910) gave an improvement on the Stokes solution 
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by taking partially into account the inertia terms in the Navier-Stokes equation. 

However these types of solution are valid for small Reynolds number  =


ఔ
 , where 

U and L are some characteristic velocity and length respectively of the problem and 

𝜈 is the kinematic viscosity. When L and 𝜈 are fixed, low R corresponds to slow 

motion and do not occur often in practical applications. As a result, there was not 

much progress till the beginning of the twentieth century in dealing with the flow 

problems of real fluids by considering the full Navier-Stokes equation along with 

the no slip condition at a solid wall. 

Moreover, the problem of the complete investigation of the fluid flow 

characteristics is to study the velocity distribution and the state of fluid even the 

entire space for all time. There are six characteristics to study viz. the three 

components of velocity (u, v, w), the temperature distribution θ, the pressure p at a 

point and density ρ of the fluid. The following equations connecting these 

characteristics form the basis of the problem: 

 Equation of the state, which connects temperature, pressure and density. 

 Equation of continuity, which formulates mathematically the law of 

conservation of mass of the fluid. 

 Equation of motion, which represent the conservation of momentum of the 

fluid. 

 Equation of energy which gives the relation of the conservation of the 

energy of the fluid. 

 

Types of fluid: 

The fluids may be classified into the following categories: 
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 Ideal fluid 

A fluid which is incompressible and having no viscosity, is known as an 

ideal fluid. Ideal fluid is an imaginary fluid as all the fluids are having some 

viscosity 

Real fluid 

A fluid which possesses viscosity is known as real fluid. All the fluids in 

actual practice are real fluids. 

Newtonian fluid 

A real fluid in which the shear stress is directly proportional to the rate of 

shear strain or velocity gradient known as Newtonian fluid. 

Non-Newtonian fluid 

A real fluid in which the shear stress is not proportional to the rate of shear 

strain or velocity gradient known as a Non-Newtonian fluid. 

Ideal plastic fluid 

A fluid, in which shear stress is more than the yield value and shear stress is 

proportional to the rate of shear strain or velocity gradient, is known as Ideal plastic 

fluid. 

Classification of fluid flows: 

There is a wide variety of fluid flow problems encountered in practice and it 

is usually convenient to classify them on the basis of some common characteristics 

to make it feasible to study them in groups. There are many ways to classify fluid 

flow problems and here we present some general categories. 
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Steady versus unsteady flows 

The term steady implies no change at a point with time. It means that in 

steady flow the fluid characteristics like velocity, pressure, density etc. at a point do 

not change with time.   Mathematically, we have, 

൬
𝜕𝑣

𝜕𝑡
൰

௫బ,௬బ,௭బ

= 0    ,  ൬
𝜕𝑝

𝜕𝑡
൰

௫బ,௬బ,௭బ

= 0 ,    ൬
𝜕𝜌

𝜕𝑡
൰

௫బ,௬బ,௭బ

= 0   𝑒𝑡𝑐. 

where  (𝑥, 𝑦, 𝑧) , is a fixed point in fluid field.   

On the contrary the term unsteady is used to any flow that is not steady. It is 

the flow, in which the velocity, pressure or density at a point change with respect to 

time. Thus mathematically,  

൬
𝜕𝑣

𝜕𝑡
൰

௫బ,௬బ,௭బ

≠ 0 ,     ൬
𝜕𝑝

𝜕𝑡
൰

௫బ,௬బ,௭బ

≠ 0 ,    𝑒𝑡𝑐. 

Compressible versus incompressible flows 

A flow is classified as being compressible or incompressible, depending on 

the level of variation of density during flow. So in case of compressible flow the 

density of the fluid changes from point to point but incompressibility is an 

approximation and the flow is said to be incompressible if the density remains 

nearly constant throughout. Therefore, the volume of every portion of fluid remains 

unchanged over the course of its motion when the flow is incompressible. 

Laminar versus turbulent flows 

Some flows are smooth and orderly while others are rather chaotic. The 

highly ordered fluid motion characterized by smooth layers of fluid is called 

laminar. The word laminar comes from the movement of adjacent fluid particles 

together in “Laminates”. The flow of high –viscosity fluids such as oils at low 

velocities is typically laminar. The highly disordered fluid motion that typically 
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occurs at high velocities and is characterized by velocity fluctuations is called 

turbulent. The flow of low-viscosity fluids such as air at high velocities is typically 

turbulent. 

If the Reynolds number is less than 2000, the flow is called laminar and if it 

is more than 4000 then the flow becomes turbulent. If the number lies between 2000 

and 4000, the flow may be laminar or turbulent. 

Natural versus forced flows 

A fluid flow is said to be natural or forced, depending on how the fluid 

motion is initiated. In forced flow, a fluid is forced to flow over a surface or in a 

pipe by external means such as a pump or a fan. In natural flows, any fluid motion 

is due to natural means such as the buoyancy effect, which manifests itself as the 

rise of the warmer (and thus lighter) fluid and the fall of cooler (and thus denser) 

fluid. 

Uniform and non-uniform flows 

The term uniform implies no change with location over a specified region. 

Thus in uniform flow the velocity at any given time does not change with respect to 

space (i.e. length of direction of the flow). Mathematically, ቀ
డ

డௌ
ቁ

௧ୀ௦௧௧
= 0 , 

Where 𝜕𝑉 = change of velocity,  𝜕𝑆 = length of flow in the direction S. 

On the other hand the flow in which the velocity at any given time changes with 

respect to space is called non-uniform flow. Thus, mathematically,  

൬
𝜕𝑉

𝜕𝑆
൰

௧ୀ௦௧௧
≠ 0 . 
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Rotational and Irrotational flows 

Rotational flows is defined as the flow in which the fluid particles while 

flowing along stream lines, also rotate about their own axis and if the fluid particles 

while flowing along stream lines, do not rotate about their own axis then that type 

of flow is called irrotational flow. 

One, two and three- dimensional flows 

A flow field is best characterized by the velocity distribution and thus a flow 

is said to be one, two or three-dimensional if the flow velocity varies in one, two or 

three primary dimensions respectively. A typical fluid flow involves a three-

dimensional geometry and the velocity may vary in all three dimensions, rendering 

the flow is three-dimensional [𝑉(𝑥, 𝑦, 𝑧) in rectangular or 𝑉(𝑟, 𝜃, 𝑧) in cylindrical 

coordinates]. However, the variation of velocity in certain directions can be small 

relative to the variation in other directions and can be ignored with negligible error. 

In such cases, the flow can be modeled conveniently as being one or two-

dimensional, which is easier to analyze. 

Drag and Lift  

When a fluid moves over a solid body, it exerts pressure forces normal to 

the surface and shear forces parallel to the surface along the outer surface of the 

body. We are usually interested in the resultant of the pressure and shear forces 

acting on the body rather than the details of the distribution of these forces along the 

entire surface of the body. The component of the resultant pressure and shear forces 

that acts in the flow direction is called the drag force (or just drag) and the 

component that acts normal to the flow direction is called the lift force (or just lift) 

Since the measurement of drag and lift depend on the transition in boundary 

layer, separation of the boundary layer and so on, it is a very difficult task to 

measure them. We therefore, employ experimental data and define them as follows: 
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𝐷𝑟𝑎𝑔 =
1

2
𝐶𝐴𝜌𝑈ଶ , 

and  𝐿𝑖𝑓𝑡 =
1

2
𝐶𝐴𝜌𝑈ଶ , 

Where 𝐶 is the coefficient of drag, 𝐶 is the coefficient of lift, A is the projected 

area in the direction of flow and U is the free-flow velocity. 

1.2 Development of Boundary Layer Theory: 

The concept of boundary layer theory of fluid flows for large Reynolds 

number or small viscosity was propounded by L. Prandtl (1904). The theory 

unified the two divergent branches of fluid dynamics, namely inviscide 

hydrodynamics and hydraulics and gave quite agreeable results for drag on the solid 

body around which the fluid moves as compared to the results obtained by the 

Stokes method of neglecting the non-linear inertia terms in Navier-Stokes equation. 

He established through theoretical considerations and several simple experiments 

that the flow about a solid body can be divided into two regions: a very thin layer in 

the neighbourhood of the body called the boundary layer, where friction i.e. the 

viscous force plays an essential part and the remaining region outside the boundary 

layer, where friction may be neglected and the flow there may be regarded as 

inviscide and irrotational. Thus the tangential (shearing) stress and the condition of 

no slip at solid walls which distinguishes a real fluid from a perfect fluid are to be 

taken into consideration only in the boundary layer. 

1.2. I Velocity Boundary Layer: 

To understand the concept of velocity boundary layer, one has to consider 

flow over the flat plate of fig. 1.2. (i). when fluid particles make contact with the 

surface, they assume zero velocity. These particles then act to retard the motion of 

particles in the adjoining fluid layer, which act to retard the motion of particles in 

the next layer and so on until at a distance 𝑦 = 𝛿 from the surface, the effect 
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becomes negligible. This retardation of fluid motion is associated with shear 

stresses 𝜏 acting in planes that are parallel to the fluid velocity (fig. 1.2.(i)). With 

increasing distance from the surface, the x velocity component of the fluid u, must 

then increase until it approaches the free stream value 𝑢∞. 

The quantity 𝛿 is termed as the velocity boundary layer thickness and it is 

typically defined as the value of 𝑦 for which u =  0.99𝑢∞ . The boundary layer 

velocity profile refers to the manner in which u varies with y through the boundary 

layer. Accordingly, the fluid flow is characterized by two distinct regions, a thin 

fluid layer (the boundary layer) in which velocity gradients and shear stresses are 

large and a region outside the boundary layer in which velocity gradients and shear 

stresses are negligible. With increasing distance from the leading edge, the effects 

of viscosity penetrate further into the free stream and the boundary layer grows. 

  Free stream 𝜹(𝒙) 

      y 

  𝝉 

 

Figure 1.2 (i): Velocity boundary layer developments on a flat plate. 

Because it pertains to the fluid velocity, the foregoing boundary layer may be 

referred to more specifically as the velocity boundary layer. It develops whenever 

there is fluid flow over a surface and it is of fundamental importance to problems 

involving convection transport. 
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1.2. II Thermal Boundary Layer:

Just as the velocity boundary develops when there is fluid f

surface, a thermal boundary layer must develop if the fluid free stream and surface 

temperatures differ. To explain this concept, we consider flow over an isothermal 

flat plate as shown in Fig. 1.2

uniform, with T(𝑦) = 𝑇

plate achieve thermal equilibrium at the plate’s surface temperature. In turn these 

particles exchange energy with tho

gradients develop in the fluid. The region of the fluid in which these temperature 

gradients exist is the thermal boundary layer

as the value of y for which the ratio

distance from the leading edge, the effects of heat transfer penetrate further into the 

free stream and the thermal boundary layer grows.

Figure: 1.2 (ii) Thermal boundary layer development on an isothermal flat plate. 
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(ii) Thermal boundary layer development on an isothermal flat plate. 
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(ii) Thermal boundary layer development on an isothermal flat plate.  
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1.2. III The Concentration Boundary Layer: 

Just as the velocity and thermal boundary layers determine wall friction and 

convection heat transfer, the concentration boundary layer determines convection 

mass transfer. If a binary mixture of chemical species A and B flows over a surface 

and the concentration of species A at the surface CA,S, differs from that in the free 

stream CA,∞ , Fig. 1.2.(iii) a concentration boundary layer develops. It is the region 

of the fluid in which concentration gradient exist and its thickness 𝛿 is typically 

defined as the value of y for which [(CA,S – CA) / (CA,S – CA, ∞ )] = 0.99.  Species 

transfer by convection between the surface and the free stream fluid is determined 

by conditions in this boundary layer. 

 

 

 

 

 

  

Figure: 1.2 (iii): Species concentration boundary layer development on a flat plate 

1.2. IV The No-Slip Condition: 

Fluid flow is often confined by solid surfaces and it is important to 

understand how the presence of solid surfaces affects fluid flow. Here we have to 

consider the flow of a fluid in a stationary pipe or over a solid surface that is non-

porous (impermeable to the fluid). All experimental observations show that a fluid 

in motion comes to a complete stop at the surface and assumes a zero velocity 
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relative to the surface. That is, a fluid in direct contact with a solid “sticks” to the 

surface due to viscous effects and there is no slip. This is known as the no-slip 

condition. This no-slip condition is responsible for the development of the velocity 

profile. The flow region adjacent to the wall in which the viscous effects (and thus 

the velocity gradients) are significant is called the boundary layer. The fluid 

property responsible for the no-slip condition and the development of the boundary 

layer is viscosity. 

A fluid layer adjacent to a moving surface has the same velocity as the 

surface. A consequence of the no-slip condition is that all velocity profiles must 

have zero values with respect to the surface at the points of contact between a fluid 

and a solid surface. Another consequence of the no-slip condition is the surface 

drag, which is the force a fluid exerts on a surface in the flow direction. 

1.2. V Skin-friction Coefficient: 

In fluid mechanics, the significance of velocity boundary layer to the 

engineer, stems from its relation to the surface shear stress and hence to surface 

frictional effects. For external flows it provides the basis for determining the local 

frictional coefficient 

𝐶 =
𝜏௦

ρ u∞
ଶ /2

  ,                                                                                        (1.2.1) 

Where ρ being the fluid density. 

A key dimensionless parameter from which the surface frictional drag or skin-

friction may be determined. 

On the other hand, the shear stress within the boundary layer is of 

appreciable amount even for fluids with small viscosity owing to large velocity 

gradient across the flow. The velocity gradient ቀ𝜕𝑢
𝜕𝑦ൗ ቁ gradually diminishes from 
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its maximum value at the wall to a negligible value at the edge of the boundary 

layer. The shear stress at the surface is given by 

𝜏 = 𝜇  𝜕𝑢

𝜕𝑦
ฬ

௬ୀ

  ,                                                                                      (1.2.2) 

Where  𝜇  is a fluid property known as coefficient of viscosity. 

1.2. VI Heat Transfer: 

  Heat transfer is a spontaneous irreversible process that takes place between 

material bodies as a result of temperature difference. The transfer of heat between a 

solid body and a liquid or gaseous fluid is a problem which involves fluid motion. 

This transport can take place in three different modes: Conduction, Convection and 

radiation.  

Conduction 

Heat conduction is identified as process of molecular transport of heat in 

bodies (or between them), due to temperature variation in the medium concerned. 

Conduction, in general is the sole agent which transports energy within a solid 

material. It is the process in which heat is transferred from regions of higher 

temperature within a system or between two systems which are in contact 

physically without any relative motion of the different parts of the system or 

systems. In fact energy is conducted through a material in which a temperature 

gradient exists by the thermal motion of various microscopic particles of which the 

material is composed. 

Convection  

 Heat transfer by convection is due to fluid motion. A heat transfer occurring 

in fluid motion, in which the diffusion of thermal energy is affected by relative 

motion within the fluid, is called convection. Convection is possible only in the 
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fluid medium. Heat transfer by convection is always accompanied by conduction. 

The combined process of heat transfer by convection and conduction is referred to 

as convective heat transfer. It is the process of heat transfer whose rate is directly 

influenced by the fluid motion. Thus the heat may be finally transferred through the 

flowing material by conduction, but the conduction process is basically altered by 

relative motion of the microscopic particles in the fluid. Thermal energy and mass 

are convected about the flow region by the motion of the fluid. 

 Moreover, heat is transferred by conduction and convection in a system of 

fluid motion. It is quite evident from the method of heat transfer from a surface to 

the surrounding fluid. At first heat is transferred from the surface by conduction to 

the adjacent fluid elements which in turn move to regions of lower temperature and 

impart heat to the neighbouring fluid particles by conduction as well. Thus 

convective process dominates a heat transfer phenomenon in fluid mechanics. As 

the convective heat transfer process and the motion of the fluid are inseparable, a 

study of hydrodynamic behaviour of the fluid is necessary in order to understand 

heat transfer taking place within a moving fluid. 

Free and Forced Convection 

 The problem of thermal convection may be subdivided into two groups 

namely forced convection and free or natural convection. 

Forced Convection  

 A convective process which takes place due to velocities created by an 

external agency such as forcing a fluid past some solid object is termed as forced 

convection i.e. the convection transfer in fluid flows that originate from an external 

forcing condition. This happens at large velocities (at large Reynolds number) and 

small temperature differences. For example, fluid motion may be induced by a fan 

or a pump or it may result from propulsion of a solid through the fluid. 
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Free Convection 

 A convective process caused by the action of body forces such as gravitation 

on the fluid, which arises as a result of density gradients due to changes in 

temperature, is termed as free convection (Natural convection). These density 

gradients give rise to distributed buoyancy force, which causes relative motion. 

Hence in free convection flow, the velocity and the temperature fields are coupled. 

In general the free convection flow velocities are much smaller than those 

associated with forced convection, the corresponding convection transfer rates are 

also smaller. In many systems involving multimode heat transfer effects, free 

convection provides the largest resistance to heat transfer and therefore plays an 

important role in the design or performance of the system. Moreover, when it is 

desirable to minimize heat transfer rates or to minimize operating cost, free 

convection is often preferred to forced convection. 

There has recently been a considerable interest in the effect of body forces 

on forced convection phenomena. In certain engineering problems, however they 

cannot be left out of consideration. It is important to realize that the heat transfer in 

mixed convection can be significantly different from that both in pure natural 

convection and in pure forced convection.  

The study of forced and free convection flow and heat transfer for 

electrically conducting fluids past a semi-infinite porous plate under the influence 

of a magnetic field has attracted the interest of many investigators in view of its 

applications in many engineering problems such as geophysics, astrophysics, 

boundary layer control in the field of aerodynamics. Engineers employ MHD 

principle, in the design of heat exchangers pumps and flow meters, in space vehicle 

propulsion, thermal protection, braking, control and re-entry, in creating novel 

power generating systems etc. Because of the above practical importance of such 

problems many researchers have been working in this field and some of these are 
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mentioned here. Soundalgekar (1973) obtained approximate solutions for the two-

dimensional flow of an incompressible, viscous fluid past an infinite porous vertical 

plate with constant suction velocity normal to the plate, the difference between the 

temperature of the plate and the free stream is moderately large causing the free 

convection currents. The natural convection heat transfer from an isothermal 

vertical wavy surface was first studied by Yao (1983) and using an extended 

Prantdl’s transposition theorem and a finite-difference scheme. He proposed a 

simple transformation to study the natural convection heat transfer from isothermal 

vertical wavy surfaces, such as sinusoidal surface. Moulic and Yao (1989) also 

investigated mixed convection heat transfer along a vertical wavy surface. Alam et 

al. (1997) have also studied the problem of free convection from a wavy vertical 

surface in the presence of a transverse magnetic field. Combined effects of thermal 

and mass diffusion on the natural convection flow of a viscous incompressible fluid 

along a vertical wavy surface have been investigated by Hossain and Rees (1999). 

Sakiadis (1961) was the first author to analyze the boundary layer flow on a 

continuous surface. Gorla et al. (1988, 1987) solved the non similar problem of free 

convective heat transfer from a vertical plate embedded in a saturated porous 

medium with an arbitrarily varying surface temperature. Cheng and Minkowycz 

(1977) also studied free convection from a vertical flat plate with applications to 

heat transfer from a dick. The unsteady free convection flow past an infinite porous 

plate and semi-infinite plate were studied by Nanda and Sharma (1962). In their 

first paper they assumed the suction velocity at the plate varying in time as 𝑡ି
భ

మ , 

where as in the second paper the plate temperature was assumed to oscillate in time 

about a constant nonzero mean. Free convective flow past a vertical plate has been 

studied extensively by Ostrach (1953) and many others. The free convective heat 

transfer on vertical semi-infinite plate was investigated by Berezovsky et al. (1977). 

Martynenko et al. (1984) investigated the laminar free convection from a vertical 

plate. Muthucumaraswamy and Meenakshisundaram (2006) investigated theoretical 

study of chemical reaction effects on vertical oscillating plate with variable 
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temperature and mass diffusion.  Shrama et al. (2010) investigated the effect of 

temperature dependent electrical conductivity on steady natural convection flow of 

a viscous incompressible low Prandtl (𝑃𝑟 <<  1) electrically conducting fluid 

along an isothermal vertical non-conducting plate in the presence of transverse 

magnetic field and exponentially decaying heat generation. Cheng and Hsu (1988) 

studied the steady forced convection problem in packed sphere beds. Makinde et al. 

(2010) studied the unsteady flow and heat transfer of a dusty fluid between two 

parallel plates with variable viscosity and electric conductivity. 

Radiation 

The mode of heat transfer that takes place in the form of electromagnetic 

waves is called radiation. It depends only on the temperature and on the optical 

properties of an emitter, with its internal energy being converted into radiation 

energy. The process of conversion of the internal energy of a substance into 

radiation energy is referred to as radiation heat transfer. Radiant emission is also 

due to thermal motion of microscopic particles, but the energy is transmitted 

electro-magnetically.  The laws of radiation are as follows 

Stefan-Boltzmann’s Law  

It states that the total amount of energy radiated per second per unit area of a 

perfect black body is directly proportional to the fourth power of the absolute 

temperature of the surface of the body i.e. 

4 TE  or 4 TE  ,       

Where   is called the Stefan’s constant.  Its value is 

system.S.G.CinKcmsergs. 421510675   or 

4284218 1067510675   KWm.orKmJS.  in S.I. 
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Kirchhoff’s Law of Radiation 

Kirchhoff’s law states that the ratio of the emissive power and the 

absorptive power for radiation of a particular wavelength and at a particular 

temperature is constant for all bodies.  This ratio is also equal to the emissive power 

of a perfectly black body at the temperature i.e. 

               








 E
a

e
and

d

QE


1
= constant,     

Where  a,e  and Q  are emissive power, absorptive power and quantity of heat 

radiation incident on the surface respectively. 

Planck’s Law of Radiation 

Planck introduced the quantum concept in 1900 and with it the idea that 

radiation is emitted not in a continuous energy state but in discrete amounts or 

quanta.  The intensity of radiation emitted by a black body, derived by Planck is 
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Where ,bI  is the intensity of radiation from a black body between wavelengths   

and c,d   is the speed of light, h  is Planck’s constant,   is the Boltzmann 

constant and T  is the temperature.  The total emissive power between wavelengths 
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The radiative flows have lots of significant applications in industrial and 

environmental processes e.g. heating and cooling chambers, fossil fuel combustion 

and energy processes evaporation from large open water reservoirs and solar power 

technology. In view of these uses many researchers investigated it and some of 

these literatures have been enlisted here. Vasu et al. (2011) studied radiation and 

mass transfer effects on transient free convection flow of dissipative fluid past a 

semi-infinite vertical plate with uniform heat and mass flux. Again radiation and 

mass transfer effects on free convection flow through porous medium bounded by a 

vertical surface were examined by Raju et al. (2011). The radiation effects on 

boundary layer flow with and without applying a magnetic field under different 

situations has been studied by many investigators, for examples: Israel-cookey et al. 

(2003), Mahmoud (2007), Hayat et al. (2007). England and Emery (1969) studied 

the thermal radiation effects of an optically thin gray gas bounded by a stationary 

vertical plate. Prasad et al. (2010) studied the radiation and mass transfer effects on 

unsteady MHD free convection flow past a vertical porous plate embedded in 

porous medium. Ibrahim et al. (2012) proposed the radiation and chemical reaction 

effects on MHD free convection flow past a moving vertical plate. Abd El-Naby et 

al. (2003) numerically studied magnetohydrodynamic (MHD) transient natural 

convection-radiation boundary layer flow with variable surface temperature, 

showing that velocity, temperature and skin friction are enhanced with a rise in 

radiation parameter increases, whereas Nusselt number is reduced. Ogulu and 

Prakash (2006) obtained analytical solutions for variable suction and radiation 

effects on dissipative-free convective, optically-thin, magnetohydrodynamic flow 

using a differential approximation to describe the radiative flux. Moreover, studies 

involving thermal radiation and transient hydromagnetic convection include the 

analyses by Prasad et al. (2006) which included species transfer and Zueco (2007) 

who also considered viscous heating. Mebine (2011) studied the effects of thermal 

radiation on transient MHD free convection flow over a vertical surface embedded 

in a porous medium with periodic temperature and obtained analytical solutions for 
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the governing coupled dimensionless partial differential equations of velocity and 

temperature. Miraj et al. (2011) studied conjugate effects of radiation and joule 

heating on magnetohydrodynamic free convection flow along a sphere with heat 

generation. Ghaly (2002) considered the thermal radiation effect on a steady flow, 

whereas Rapits and Massalas (1998). Ferdows et al. (2004) analyzed free 

convection flow with variable suction in presence of thermal radiation. Ibrahim et 

al. (2008) studied the effects of chemical reaction and radiation absorption on 

transient hydromagnetic natural convection flow with wall transpiration and heat 

source. Analytical solutions for heat and mass transfer by laminar flow of a 

Newtonian, viscous, electrically conducting and heat generation/ absorbing fluid on 

a continuously vertical permeable surface in the presence of a radiation, a first – 

order homogeneous chemical reaction and the mass flux are reported by Kesavaiah 

et al. (2011). Korycki (2006) described radiative heat transfer as an important 

fundamental phenomena existing in practical engineering such as those found in 

solar radiation in buildings, foundry engineering and solidification processes, 

chemical engineering, composite structures applied in industry. Rashidi et al. 

(2014) examined free convective heat and mass transfer in a steady two-

dimensional magnetohydrodynamic fluid flow over a stretching vertical surface in 

porous medium and in this study thermal radiation and non-uniform magnetic field 

were taken into consideration. 

1.3 Magnetohydrodynamics (MHD): 

Magnetohydrodynamics (MHD) is the branch of continuum mechanics 

which deals with the flow of electrically conducting fluids in electric and magnetic 

field. Many natural phenomena and engineering problems are worth being subjected 

to an MHD analysis. MHD equations are ordinary electromagnetic and 

hydrodynamic equations modified to take into account the interaction between the 

motion of the fluid and the electromagnetic field. The formulation of the 

electromagnetic theory in mathematical form is known as Maxwell’s equation. The 
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effect of the gravity field is always present in forced flow heat transfer as a result of 

the buoyancy forces connected with the temperature differences. Usually they are of 

a small order of magnitude so that the external forces may be neglected. 

 In the last few decades, much work has been done on the generalization of 

viscous flow and heat transfer solutions to take account of the additional effects of a 

magnetic field when the fluid involved is electrically conducting. It was known 

from Faraday’s (1832) time that a solid body on a fluid material moving in a 

magnetic field experiences on electromotive force (e. m. f.). If the material is 

electrically conducting and a current path is available, electric current ensure. Also 

currents may be induced by change of the magnetic field with time. There are two 

basic consequences: 

I. An induced magnetic field associated with these currents appears, 

perturbing the original magnetic field. 

II. An electromotive force due to the interaction of currents and field 

appears, perturbing the original motion. 

 

 The motion of fluid velocity affects the magnetic field by carrying the 

magnetic fields lines partially (depending upon the electrical conductivity of the 

fluid ) along with it and the magnetic field affects the motion by producing a 

mechanical force namely, the Lorentz force BJ


  , where J


 is electric current 

density and B


 the magnetic induction vector in the fluid region. 

The study of MHD is quite important in the field of Aeronautics, especially 

Missile Aerodynamics, since the temperature that occur in such fluid speeds are 

sufficient to dissociate or even ionize the air appreciably. For example, when a high 

speed missile re-enters the earth’s atmosphere, a very large amount of heat is 

generated due to the friction of air molecules as this viscous heating may sometimes 

be so considerable as to ionize the air near the forward stagnation point. Again, for 

most of the liquids and gasses are poor conductors of electricity. As a consequence 
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their motion can normally be treated by the principles of fluid dynamics. However, 

it is possible to make some gasses very highly conducting by ionizing them. For 

ionization to take effect, the gas must be very hot at temperatures upwards of 

05000 K or so. Such ionized gasses are called PLASMA. The material within a star 

is plasma of very high conductivity will exists within a strong magnetic field. 

Astro-physicians come into realize that the whole universe are conducting, ionized 

gasses (plasmas) and significantly strong magnetic fields. In the interwar period the 

astrophysicists, notably Cowling (1934) and Ferraro (1957), began to explore the 

formal theory of MHD and its applications, while other scientist and engineers such 

as William (1930) and Hartmann (1937) performed simple experiments on the flow 

of conducting liquids in the laboratory. 

In MHD heat transfer problems, the additional body force term viz. the 

Lorentz force comes into play in the momentum equation and the term 

corresponding to Joule heating appears in the energy equation. In a forced 

convection system, the energy equation remains uncoupled from Maxwell’s 

equations and Navier-Stokes equations. Thus the electromagnetic and velocity 

fields can be determined independently of the temperature field. However, when 

natural convection forces are present, the Navier-Stokes equation becomes coupled 

with the energy equation and simultaneous solution is required. In view of natural 

convection problems, the velocity being zero in the free stream; the induced 

magnetic field does not exist there. Thus the influence of the magnetic field on the 

boundary layer is extended through the Lorentz force confined to the boundary 

layer only, with no additional effects arising out of the free stream pressure 

gradient. Thus the free convection MHD problems can be formulated in a much 

simpler way than the corresponding forced convection problems. 

Magnetohydrodynamic flows in porous media have stimulated considerable 

attention owing to the importance of such flows in magnetic materials processing 

(1977), chemical engineering (1989) and geophysical energy systems (1994). 

Considering these applications of the flow through porous medium, a series of 
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investigation has been performed by different researchers. For instance Chaudhary 

and Jain (2008) studied the influence of oscillating temperature on 

magnetohydrodynamic convection heat transfer past a vertical plane in a Darcian 

porous medium.  Rossow (1958), Greenspan and Carrier (1959) studied extensively 

the hydromagnetic effects on the flow past a plate with or without injection/suction. 

The hydromagnetic channel flow and temperature field was investigated by Attia 

and Kotab (1996). Steven et al. (2012) studied the magnetohydrodynamic free 

convective flow past an infinite vertical porous plate with the effect of viscous 

dissipation subject to a constant suction velocity. Singer (1965) further assessed the 

unsteady free convection heat transfer with magnetohydrodynamic effects in a 

channel regime. Rao (1971) analyzed the unsteady magnetohydrodynamic 

convection heat transfer past an infinite plane. Soundalgekar et al. (1973) studied 

on fully-developed MHD free convective flow between two vertical, electrically 

conducting plates and observed significant result on Hartmann number, thermal 

conductance ratio and line heat source. Ram (1991) investigated the steady 

magnetohydrodynamic convective flow of a partially ionized gas past an infinite 

vertical porous plate in a rotating frame of reference taking Hall and Ion-slip 

currents into account and discussed the effect of Hall and ion-slip currents as well 

as the other parameter entering into the problem. Chaudhary and Jain (2008) 

presented an analytical study of magnetohydrodynamic transient convection flow 

past a vertical surface embedded in a porous medium with an oscillating 

temperature. Alam et al. (2006) studied Dufour and Soret effect with variable 

suction on unsteady MHD free convection flow along a porous plate. Mishra et al. 

(2013) investigated free convective fluctuating MHD flow through porous media 

past a vertical porous plate with variable temperature. Sarada and Shanker (2013) 

studied the effect of chemical reaction on an unsteady magneto hydrodynamic flow 

past an infinite vertical porous plate with variable suction and heat convective mass 

transfer, where the plate temperature oscillates with the same frequency as that of 

variable suction velocity. The non–linear partial differential equations governing 
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the flow have been solved numerically using finite difference method. Ahmed and 

Batin (2014) investigated the flow model of steady free convective MHD flow of an 

incompressible viscous electrically-conducting fluid over an infinite vertical 

isothermal porous plate with mass convection. Chen (2004) employed a numerical 

method to study the heat and mass transfer in MHD free convective flow with 

Ohmic heating and viscous dissipation. Turkyilmazoglu (2011) presented multiple 

solutions in visco-elastic MHD fluid flow and heat and mass transfer over 

stretching and shrinking surfaces. 

1.4 Porous Medium: 

 In 1962, Leonhard Euler’s description of a porous body was worth mention. 

His remarks on porous bodies are: “All bodies the World are composed of rough 

and suitable matter; the first one is called the characteristics matter whereas the 

other due to its real infinity small density contributes nothing to the increase of their 

mass. Since the mixture of both matters extends to the smallest part, those parts of 

the space, in which no rough matter contained, are called the pores of the bodies, 

and there are different kinds concerning the size, because also the smallest parts are 

still filled up with pores. The most distinct difference however, which must be 

considered for the pores of any body, is that some form of an open part with the 

others, whereas other one are surrounded by the rough matter in such a way that the 

sub tile matter there in contained cannot escape. In order to denote these differences 

we call the first open pores and the last closed pores”. In 1760 he guessed an 

example of this definition, the water saturated porous, solid which is of immediate 

relevance to the topic. Reinhard Woltman (1794) was a harbor construction director 

(1757-1837) from Hamburg, he expanded his idea on soil machines and porous 

bodies and introduced the volume fraction concept, an essential part of the theory of 

porous medium. Around the mid 19th century, fundamental effects concerning 

porous medium were studied and described by Delesse, Fick and Darcy (1996), 

namely the equality of surface and volume fractions in porous medium with 
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statistically distributed pores, the diffusion phenomenon, in the interaction between 

the constituents. 

 Darcy (1856) was the first scientist to study the interaction between two 

constituents in between the skeleton (Porous soil body) and water. He observed, in 

tests with natural sand, the proportionality of the total volume of water running 

through the sand and the loss of pressure. Although these investigations were of a 

purely experimental nature, his results are essential for a continuous mechanical 

treatment of the motion of a liquid in a porous solid. The porous medium is in fact a 

non-homogeneous medium. For the sake of analysis, it is possible to describe the 

flow in terms of a homogeneous fluid with averaged dynamic properties having 

some effects on the locally non-homogeneous continuum. Thus the flow problems 

of non-homogeneous fluid under the action of the properly averaged external forces 

can be studied. On the basis of this hypothesis a complicated problem of flow 

through a porous medium reduces to the flow problem of a homogeneous fluid with 

some resistance. Today Darcy’s law is theoretically well founded by 

thermodynamics. For a homogeneous medium the Darcy’s law is expressed in 

vector form as  

�⃗� = −
𝐾ሬሬ⃗

𝜇
. ∇ሬሬ⃗ 𝑃 ,                                                                                                         (1.4.1) 

Where 𝐾ሬሬ⃗  is in general a second order tensor. 

For the case of an isotropic medium the permeability is a scalar and the equation 

(1.4.1) simplifies to 

∇ሬሬ⃗ 𝑃 = −
𝜇

𝐾
�⃗�                                                                                                           (1.4.2) 

Following Wooding (1957), many early authors on connection in porous medium 

used an extension of equation (1.4.2) of form  

𝜌 ቈ
𝜕�⃗�

𝜕𝑡
+ (�⃗�. ∇)�⃗� = −∇ሬሬ⃗ 𝑝 −

𝜇

 𝐾
�⃗�                                                                        (1.4.3) 
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An alternative to Darcy’s equation what is commonly known as Brinkman’s 

equation and is 

∇ሬሬ⃗ 𝑃 = −
𝜇

𝐾
�⃗� + 𝜇∇ଶ �⃗�  ,                                                                                        (1.4.4) 

 

with inertial term omitted. 

Combining the equations (1.4.3) and (1.4.4) together the Navier-Stokes equation of 

motion for any incompressible viscous fluid through a porous medium can be 

written as follows: 

𝜌 ቈ
𝜕�⃗�

𝜕𝑡
+ (�⃗�. ∇ሬሬ⃗ )�⃗� = 𝜌�⃗� − ∇ሬሬ⃗ 𝑃 + 𝜇∇ଶ�⃗� −

𝜇

𝐾
�⃗� ,                                               (1.4.5) 

Where �⃗� is the external force acting in the fluid per unit mass. 

Fluid flow through a porous media has been studied theoretically and 

experimentally by numerous authors due to its wide applications in various fields 

and some of these are listed here. An analytical solution for unsteady free 

convection in porous media has been studied by Magyari et al. (2004). Chamkha et 

al. (2000) studied the effects of Hydromagnetic combined heat and mass transfer by 

natural convection from a permeable surface embedded in a fluid saturated porous 

medium. Influence of chemical reaction and radiation on unsteady MHD free 

convection flow and mass transfer through viscous incompressible fluid past a 

heated vertical plate immersed in porous medium in the presence of heat source was 

investigated by Sharma et al.  (2011). Mahapatra et al. (2010) studied the effects of 

chemical reaction on free convection flow through a porous medium bounded by a 

vertical surface. Sattar (1992) studied numerically free convection flow through a 

porous medium bounded by a semi-infinite vertical porous plate and obtained 

analytical solution by the perturbation technique adopted by Singh and Dikshit 

(1998). Sattar et al. (2000) studied unsteady free convection flow along a vertical 

porous plate embedded in a porous medium. Ahmed (2007) looked the effects of 



27 
 

unsteady free convective MHD flow through a porous medium bounded by an 

infinite vertical porous plate. Chaudhary and Jain (2009) discussed the MHD heat 

and mass diffusion flow by natural convection past a surface embedded in a porous 

medium. Radiation effects on an unsteady MHD convective heat and mass transfer 

flow past a semi – infinite vertical permeable moving plate embedded in a porous 

medium was studied by Prasad et al. (2008). Ramana Reddy et al. (2010) 

investigated the mass transfer and radiation effects of unsteady MHD free 

convective fluid flow embedded in porous medium with heat generation/absorption. 

Patil and Kulkarni (2008) studied the effects of chemical reaction on free 

convective flow of a polar fluid through porous medium in the presence of internal 

heat generation. Ahmed et al. (2014) investigated for the model of unsteady MHD 

thermal convection flow of a viscous incompressible absorbing-emitting optically 

thin gray gas along an impulsively-started semi-infinite vertical plate adjacent to the 

Darcian porous regime in presence of a first order chemical reaction and significant 

thermal radiation effects. The study of the thermal radiation and chemical reaction 

effects on an unsteady MHD free convective mass transfer flow past an accelerated 

infinite vertical plate embedded in a porous medium was performed by Sarma et al. 

(2014). The effects of chemical reaction and thermal starification over a vertical 

stretching surface in a porous medium were considered by Mansour et al. (2008).  

Acharya et al.  (2014) studied free convective magnetohydrodynamics (MHD) flow 

of a viscous incompressible and electrically conducting fluid past a hot vertical 

porous plate embedded in a porous medium in the presence of heat source and they 

recorded that the presence of porous media has no significant contribution to the 

flow characteristics and viscous dissipation compensates for the heating and cooling 

of the plate due to convective current. Sarada and Shankar (2013) studied the 

numerical solutions for heat and mass transfer by laminar flow of a Newtonian, 

viscous, electrically conducting fluid on a continuously vertical permeable porous 

surface in the presence of a heat source, a first order homogeneous chemical 

reaction and the mass flux. Leong et al. (2005) studied on heat transfer of 
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oscillating flow through a channel filled with aluminum foam subjected to a 

constant wall heat flux. The surface temperature distribution on the wall, velocity of 

flow through porous channel and pressure drop across the test section were 

measured. Hassanien et al.  (1990) investigated about a problem of two-dimensional 

unsteady flow of a viscous, incompressible, electrically-conducting fluid through a 

porous medium bounded by two infinite parallel plates under the action of a 

transverse magnetic field is presented. The lower plate is fixed while the other is 

oscillating in its own plane. Kaviany (1985) used a numerical solution of laminar 

flow in a porous channel bounded by isothermal parallel plates and his work was 

based on the Darcy model. Poulikakos and Renken (1987) used a variable porosity 

model and numerically investigated the effects of flow inertia bounded by parallel 

plates and also for circular tubes. Barletta et al. (2007) studied on fully developed 

laminar mixed convection flow in a vertical plane parallel channel filled with a 

porous medium and subject to isoflux-isothermal wall conditions is investigated 

assuming that (i) the Darcy law and the Boussinesq approximation hold, (ii) the 

effect of viscous dissipation is significant. Kim et al. (1994) investigated a 

numerical study which is made of heat transfer characteristics from forced pulsating 

flow in a channel filled with fluid-saturated porous media. The channel walls were 

assumed to be at uniform temperature. The Brinkman-Forchheimer-extended Darcy  

model was employed. The time-dependent, two-dimensional governing equations 

were solved by using finite-volume techniques. Vafai and Kim (1989) studied 

porous forced convection between two parallel plates. Hooman et al. (2007) 

investigated numerically the forced convection with viscous dissipation in a parallel 

plate channel filled by a saturated porous medium. 
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1.5 Governing Equations: 

 The basic equations governing the motion of an incompressible, viscous and 

electrically conducting fluid through a porous medium in the presence of a 

magnetic field, heat sources and sinks are as follows: 

 

I. Equation of continuity: 

𝑑𝑖𝑣 �⃗�  = 0  ,                                                                                               (1.5.1) 

II. Equation of motion (modified Navier-Stokes equation) : 

𝜕�⃗�

𝜕𝑡
+ (�⃗�. ∇)�⃗� = �⃗� −

1

𝜌
∇𝑝 + 𝜈∇ଶ�⃗� + 𝐽 × 𝐵ሬ⃗ −

𝜈

𝐾
�⃗� ,                           (1.5.2) 

III. Equation of energy: 

𝜌𝐶 
𝜕𝑇

𝜕𝑡
+ (𝑞ത. ∇)𝑇൨ = 𝜅∇ଶ𝑇 + 𝜇𝛷 −

𝐽ଶ̅

𝜎
+ 𝑄 ,                                     (1.5.3) 

IV. Equation of mass transfer (modified): 

𝜕𝐶

𝜕𝑡
+ (�⃗�. ∇)𝐶 = ∇ଶ𝐶 ,                                                                              (1.5.4) 

where in rectangular Cartesian coordinates 

∇ଶ≡
𝜕ଶ

𝜕𝑥ଶ
+

𝜕ଶ

𝜕𝑦ଶ
+

𝜕ଶ

𝜕𝑧ଶ
                                                                            (1.5.5) 

𝛷 = 2
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⎢
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+
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+
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൰
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+
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൰

ଶ

−
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+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
ൠ

ଶ

⎦
⎥
⎥
⎥
⎤

     (1.5.6) 

Maxwell’s equations in rationalized MKS system of unit are: 
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curl 𝐸ሬ⃗ = −
𝜕𝐵ሬ⃗

𝜕𝑡
                                                                                              (1.5.7) 

curl𝐵ሬ⃗ = 𝜇𝐽                                                                                                   (1.5.8) 

Div 𝐵ሬ⃗ = 0                                                                                                       (1.5.9) 

𝐽 = ൣ𝐸ሬ⃗ + �⃗� × 𝐵ሬ⃗ ൧                                                                                          (1.5.10) 

 

1. 6 Boundary Conditions: 

 The boundary conditions of a flow of an incompressible, viscous, 

electrically conducting fluid through a porous medium in presence of a transverse 

magnetic field are: 

(I)        there is no slip of fluid on the boundary ; 

(II) T = 0 or 0
n
T 




 or wTT   on the boundary ; 

(III)  TT  at a large distance from the boundary ; 

(IV)  CC  at a large distance from the boundary ; 

(V) the normal component of the magnetic induction is continuous across 

the interface 

(VI)  If none of the regions (fluid, solid or vacuum) is perfectly conducting, 

the tangential component of the magnetic field 
e

B
H





  is continuous 

across the interface. If, however, at least one of two media in contact is 

perfectly conducting, then the magnetic field 
e

B
H





  must satisfy the 

condition 

,J)H-H(n s12
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Where n


 is the unit vector normal to the surface, 2H,H1


 are the values 

of the magnetic field on two sides of the interfaces and sJ


 is the surface 

current density.   

(VII) The tangential component of the electric field is continuous across the 

interface. 

The equation of continuity, motion and energy can be simplified with the usual 

boundary layer approximations whenever a problem of boundary layer flow and 

heat transfer is considered. 

1.7 Non-dimensional Quantities: 

 The non-dimensional quantities are introduced as follows: 

Reynolds Number  Re  

The Reynolds number is defined as 

𝑅𝑒 ≡
𝐼𝑛𝑒𝑟𝑡𝑖𝑎 𝑓𝑜𝑟𝑐𝑒

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒
=

𝑈∞ 𝐿

𝜈
 

It is the most important dimensionless number in fluid dynamics providing a 

criterion for dynamic similarity.  The Reynolds number is used for determining 

whether a flow is laminar or turbulent. 

Prandtl Number  Pr  

It is a measure of the relative importance of heat conduction and viscosity of 

the fluid.  The Prandtl number, like the viscosity and thermal conductivity, is a 

material property and it thus varies from fluid to fluid.  Usually Prandtl number is 

large when thermal conductivity is small and viscosity is large and small when 

viscosity is small and thermal conductivity is large.  It is defined as 
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Grashoff Number  Gr  

The Grashoff number usually occurs in free convection problems.  This 

gives the relative importance of buoyancy force to the viscous forces.  This number 

is defined as 

𝐺𝑟 =
𝐵𝑢𝑜𝑦𝑎𝑛𝑐𝑦 𝑓𝑜𝑟𝑐𝑒

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒 
≡

𝑔 𝛽 (∆𝑇) 𝐿ଷ

𝜈ଶ
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Modified Grashoff Number  Gm  

The modified Grashoff number usually occurs in free convection problems, 

when the effect of mass transfer is also considered.  This number is defined as 

𝐺𝑚 ≡
𝑔 �̅� (∆𝐶) 𝐿ଷ

𝜈ଶ
 

Eckert Number  Ec  

The Eckert number is defined as 

𝐸𝑐 =
𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦

𝐸𝑛𝑡ℎ𝑎𝑙𝑝𝑦 
≡

𝑈∞
ଶ

𝐶(∆𝑇)
 

In compressible fluids it determines the relative rise in temperature of the fluid due 

to adiabatic compression. 

Hartmann Number  M  

The Hartmann number is defined as 

𝑀 =
𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑏𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒 
≡

𝜎 𝐵
ଶ𝜈

𝜌 𝑈∞
ଶ

 

Nusselt Number  Nu  

The dimensionless coefficient of rate of heat transfer which is generally 

known as the Nusselt number, is defined as 

𝑁𝑢 =
𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
≡

𝐿ℎ

𝜅
≡ −

𝐿

(∆𝑇)
൬

𝜕𝑇

𝜕𝑦
൰

௬ୀ

 

Sherwood Number  Sh  
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The dimensionless coefficient of rate of mass transfer which is generally 

known as the Sherwood number, is defined as 

 .𝑆ℎ =
ை௩ ௦௦ ௗ௨௦

ௌ௦ ௗ௨௦ 
≡



ಲಳ
≡ −



(∆)బ
ቀ

డ

డ௬
ቁ

௬ୀ
 

Schmidt Number  Sc  

This number is the ratio of momentum diffusivity to molecular diffusivity.  

It is defined as 

DydiffusivitMolecular

ydiffusivitMomentum
Sc


 . 

The Schmidt number plays a role in convective mass transfer analogous to that of 

Prandtl number in convective heat transfer. 

Magnetic Reynolds number (Rm) 

The magnetic Reynolds number is defined as 

𝑅𝑚 =
𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛
≡ 𝑈𝐿𝜎𝜇 =

𝑈𝐿

𝜂
 

If 1Rm , it can be shown that the induced magnetic field is small compared to the 

applied magnetic field. 

Magnetic Prandtl Number  Pm  

The magnetic Prandtl number is defined as 

𝑃𝑚 =
௧௧௬ ௗ௨௦

ெ௧ ௗ௨௦
≡

ఔ

ఎ 
, 

 

Drag coefficient (𝑪𝑫) 
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The drag coefficient is defined as 

𝐶 =
𝐷𝑟𝑎𝑔 𝑓𝑜𝑟𝑐𝑒

𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 
≡

𝐹

1
2

𝜌𝑉ଶ𝐴
 

Lift coefficient (𝑪𝑳) 

The lift coefficient is defined as 

𝐶 =
𝐿𝑖𝑓𝑡 𝑓𝑜𝑟𝑐𝑒

𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 
≡

𝐹

1
2

𝜌𝑉ଶ𝐴
 

Non-dimensional Permeability parameter     𝑆 ≡


మ
 

Non-dimensional heat source / sink parameter        𝛼ത ≡
ொ మ

 (்ೢ ି ∞்)
 

1.8 Outline of the Thesis: 

The present thesis entitled, “Some flow problems on magnetohydrodynamic 

free convective heat transfer flow” deals with the mathematical investigations of 

various flow problems pertaining to steady/unsteady, free convective, 

magnetohydrodynamic flows through porous medium in non-rotating as well as 

rotating systems.  

The thesis consists of eight chapters. The preliminary chapter-I deals with 

the introduction of fluid mechanics and other relevant areas. 

The chapter-II is devoted to investigate the combined effects of 

injection/suction and magnetic field on the Oscillatory MHD flow through porous 

medium bounded by the horizontal parallel porous plates. Both the stationary plates 

are subjected to same constant injection / suction velocities. A uniform magnetic 

field is applied normal to the planes of the plates. A closed form analytical solution 

is obtained and the effects of different flow parameters on velocity field and skin-

friction are discussed with the help of graphs in detail. It is found that, when the 
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Darcy number (Da) or suction/injection parameter (λ) is increased, the fluid velocity 

profiles also increased. An increase in Da or λ is found to escalate the shear stress 

(𝜏). Possible applications of the present study include laminar aerodynamics, 

materials processing and thermo-fluid dynamics.  

In chapter III, an Analytical solutions for the steady magnetohydrodynamic 

laminar mixed convection heat and mass transfer flow of viscous electrically 

conducting fluid past a vertical permeable surface embedded in a Darcian porous 

medium with thermal radiation and chemical reaction effects has been presented. 

The heat equation includes the terms involving the radiative heat flux, Ohmic 

dissipation, viscous dissipation and the internal absorption whereas the mass 

transfer equation includes the effects of chemically reactive species of first-order. 

The non-linear coupled differential equations are solved analytically by perturbation 

technique. Validity of the analysis has been performed by comparing the present 

results with those available in the open literature and a very good agreement has 

been established. It is observed that the effect of heat absorption is to decrease the 

velocity and temperature profiles in the boundary layer. 

  In chapter-IV, a rotating model is developed for a two-dimensional, 

unsteady, incompressible electrically conducting, laminar free convection boundary 

layer flow of heat and mass transport in a saturated porous medium, bounded by an 

infinite vertical porous surface in presence of an applied transverse magnetic field.  

The porous plane surface and the porous medium are assumed to rotate in a solid 

body rotation. The vertical surface is subjected to uniform constant suction 

perpendicular to it and the temperature at this surface fluctuates in time about a 

non-zero constant mean. The basic equations governing the flow are in the form of 

partial differential equations and have been reduced to a set of ordinary differential 

equations. The problem is tackled analytically using classical perturbation 

technique. Pertinent results with respect to embedded parameters are displayed 

graphically and tables for the velocity, concentration and skin friction profiles were 

discussed quantitatively. Applications to the flows of fluids through porous medium 
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bounded by rotating porous systems find many industrial applications particularly 

in the fields of centrifugation, filtration and purification processes. 

 The chapter-V is to investigate the effect of magnetic field and radiation on 

unsteady Magnetohydrodynamic boundary layer flow and heat transfer through a 

Darcian porous medium bounded by a uniformly moving semi-infinite isothermal 

vertical plate in the presence of thermal radiation. The flow model is considered as 

a viscous, incompressible, electrically-conducting Newtonian fluid which is an 

optically thin gray gas. Suitable transformations are used to convert the partial 

differential equations corresponding to the momentum and energy equations into 

ordinary differential equations. Analytical solutions of these equations are obtained 

by Laplace transform. The effects of Hartmann number (M), porosity parameter 

(K), thermal radiation parameter (Ra), and Prandtl number (Pr) on flow velocity, 

fluid temperature, velocity and temperature gradients at the surface are studied 

graphically. Velocity is reduced with Hartmann number but enhanced with thermal 

radiation and porosity parameter. Increasing radiation parameter Ra tends to boost 

the heat transfer rate at the wall. Applications of the study arise in engineering and 

geophysical sciences like magnetohydrodynamic transport phenomena and 

magnetic field control of materials processing, solar energy collector systems. 

An analysis of periodic heat and mass transport of unsteady hydromagnetic 

flow past a parabolic started motion of the infinite vertical plate immersed in 

Darcian porous regime in presence of a first order chemical reaction has been 

presented in Chapter VI. Here the plate temperature as well as concentration level 

near the plate are increased linearly with time. The boundary layer conservation 

equations have been solved by Laplace transforms technique. They satisfy all 

imposed initial and boundary conditions and reduce to some well-known solutions 

for Newtonian fluids. The effects of different physical parameters namely Magnetic 

field parameter, porosity parameter, Prandtl number, Grashoff number, Schmidt 

number and chemical reaction on the flow velocity, fluid temperature, concentration 

have been studied graphically. It has been observed that both the velocity and 
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concentration are decreased with increasing values of chemical reaction parameter. 

But the opposite behaviour has been found for the flow velocity when the values of 

free convection as well as porosity parameter are increased. Application of 

magnetic fields to medical science is growing rapidly, with the development of 

novel magnetic pumps, hydromagnetic separation devices with chemical 

engineering and geophysical energy systems. 

 A theoretical model is developed for unsteady MHD laminar viscous 

thermal convection flow of an optically-thick gray gas flowing over a semi-infinite 

vertical moving porous plate embedded in a uniform porous medium including the 

Soret effects and heat generating/absorbing in Chapter VII. The Rosseland diffusion 

flux approximation is employed to simulate radiative heat transfer contribution. The 

plate moves with constant velocity in the direction of fluid flow while the free 

stream velocity is assumed to follow the exponentially increasing small perturbation 

law. The dimensionless governing equations have been solved analytically by using 

perturbation technique. The effects of Soret number (S0), heat generation (Q), 

Rosseland radiation-conduction parameter (R) and magnetic body force (M) on 

dimensionless velocity (u), temperature (), concentration profiles (∅), coefficient 

of skin-friction (𝜏), Nusselt number (Nu) and Sherwood number (Sh) are studied 

graphically. It is found that with the increasing value of Soret number or porosity, 

the flow velocity profiles tends to accelerated, while heat generation of the fluid 

decelerated the flow velocity. These results may useful in natural sciences, 

engineering sciences and in industry. 

Finally the chapter VIII deals with the problem of mixed convection flow of 

an electrically conducting fluid along a vertical plate embedded in a porous medium 

in the presence of a uniform normal magnetic field, first order chemical reaction 

and subjected to a periodic suction velocity. The basic equations comprising the 

balance laws of mass, linear momentum, and energy have been solved analytically 

using perturbation technique. Graphical results for the velocity, temperature, 

concentration, skin-friction, Nusselt number and Sherwood number profiles are 
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illustrated and discussed for various physical parametric values. The results of our 

study agree well with the previous solutions obtained without mass transfer and 

chemical reaction. The present study has great significance in different field of 

science and engineering. 

For the present study several books, journals, articles of different 

researchers, scientists, authors etc. are used for the reference and these are included 

in the bibliography. 

 

 


