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7.1 Introduction: 

 Heat generation is important in the context of exothermic or endothermic 

chemical Reaction and because of its numerous applications it has been a subject of 

interest of many researchers like Beg et al. (2005) studied the hydromagnetic 

oscillating heat transfer in a Darcian regime with heat generation/absorption using a 

perturbation technique. Radiative and free convective effects on MHD flow through 

a porous medium with periodic wall temperature and heat generation and absorption 

investigated by Sharma et al. (2014). Deka and Bhattacharya (2011) explained 

unsteady free convective Couette flow of heat generating/absorbing fluid in porous 

medium. Rajput and Sahu (2011) described radiation effects on steady 

hydromagnetic flow of a viscous fluid through a vertical channel in a porous 

medium with heat generation or absorption. Jha and Mussa (2012) studied unsteady 

natural convection Couette flow of heat generating/absorbing fluid between vertical 

parallel plates filled with porous material. Vajravelu and Hadjinicolaou (1997) 

studied the convective heat transfer in an electrically conducting fluid near an 

isothermal stretching sheet and they studied the effect of internal heat generation or 

absorption. Shanker et al. (2010) studied about the numerical solution of unsteady 

two-dimensional, laminar boundary layer flow of a viscous, incompressible, 

electrically conducting fluid along a semi-infinite vertical plate in the presence of 

thermal and concentration buoyancy effects under the influence of uniform 

magnetic field applied normal to the flow. Kinyanjui et al. (2001) presented 

simultaneous heat and mass transfer in unsteady free convection flow with radiation 

absorption past an impulsively started infinite vertical porous plate subjected to a 

strong magnetic field. Mishra et al. (2015) presented a solution for the transient free 

convective flow of a viscous and incompressible fluid between two vertical walls as 

a result of heat and mass transfer. Hady et al. (2006) studied the problem of free 

convection flow along a vertical wavy surface embedded in electrically conducting 

fluid saturated porous media in the presence of internal heat generation or 

absorption effect. 
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When heat and mass transfer occur simultaneously in a moving fluid, the 

relations between the fluxes and the driving potentials are of more intricate in 

nature. Mass fluxes influenced by temperature gradient are termed as Soret or 

thermal diffusion effect. The research work relevant to this field are Sengupta et al. 

(2015) analyzed a basic theoretical fluid model depicting the parametric effect of 

the Peclet numbers on a two dimensional chemically reactive heat and mass transfer 

flow past an oscillating plate with Soret and first order chemical reaction effects. 

Bhavana et al. (2013)  presented an important work  on free convective unsteady 

MHD flow in a vertical plate with heat source, thermo diffusion (Soret effect) and 

the influence of the thermal radiation on hydromagnetic for a viscous fluid past a 

semi-infinite vertical moving porous plate embedded in a porous medium. Moreover 

Sengupta and Ahmed (2014) investigated the Soret effect with chemical reaction in 

case of MHD free convective dissipative flow in velocity slip regime. Ahmed et al. 

(2013) investigated the Soret effect in MHD free convection flow. Alam and 

Rahman (2006) presented Dufour and Soret effects on mixed convection flow past a 

vertical porous flat plate with variable suction embedded in a porous medium for a 

hydrogen-air mixture as the nonchemical reacting fluid pair. Osalusi et al. (2008) 

studied numerically the effect of thermal-diffusion and diffusion-thermo on 

combined heat and mass transfer of a steady hydromagnetic convective and slip 

flow due to a rotating disk with viscous dissipation and Ohmic heating. Beg et al. 

(2009) investigated the combined effects of Soret and Dufour diffusion and porous 

impedance on laminar magnetohydrodynamic mixed convection heat and mass 

transfer of an electrically-conducting, Newtonian, Boussinesq fluid from a vertical 

stretching surface in a Darcian porous medium under uniform transverse magnetic 

field. 

 It is worth mentioning that radiation effects on the convective flow are very 

useful in the context of space technology, in engineering processes, process 

involving high temperature, industrial areas and for the design of pertinent 

equipment like nuclear power plants, gas turbines and the various propulsion 

devices for aircraft, missiles, satellites and space vehicles are examples of such 
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areas such as heating and cooling chambers, fossil fuel combustion. Keeping in 

view these important applications many authors studied it such as Cess (1966) 

investigated about the interaction of thermal radiation with free convection heat 

transfer. Chamkha et al. (2001) examined radiation effects on a free convection 

flow past a semi infinite vertical plate with mass transfer.  Kim (2000) discussed 

unsteady MHD convective heat transfer past a semi-infinite vertical porous moving 

plate with variable suction. Khatun and Ahmed (2014) presented an analytical 

solution for the steady magnetohydrodynamic laminar mixed convection heat and 

mass transfer flow of viscous electrically conducting fluid past a vertical permeable 

surface embedded in a Darcian porous regime with thermal radiation and chemical 

reaction effects. Soundalgekar and Takhar (1993) investigated radiation effects on 

free convection flow of a gas past a semi-infinite flat plate. Sengupta and Sen 

(2013) investigated the thermal radiation on the free convective heat and mass 

transfer flow in presence of heat generation and thermo-diffusion effects. An 

investigation has been performed for unsteady Magnetohydrodynamic boundary 

layer flow and heat transfer through a Darcian porous medium bounded by a 

uniformly moving semi-infinite isothermal vertical plate in presence of thermal 

radiation by Khatun and Ahmed (2015). An analytical solution of MHD free 

convective, dissipative boundary layer flow past a vertical porous surface in the 

presence of thermal radiation, chemical reaction and constant suction, under the 

influence of uniform magnetic field was studied by Raju et al. (2014). The effects of 

hall current, chemical reaction and radiation on a free convection flow bounded by a 

vertical surface embedded in porous medium under the influence of uniform 

magnetic field was studied by Reddy et al. (2012). Sharma et al. (2014) studied the 

effect of magnetic field and radiating heat transfer on unsteady free convection 

viscous incompressible electric conducting fluid past a vertical surface in a rotating 

porous medium. Mohammed Ibrahim et al. (2012) presented the radiation and 

chemical reaction effects on MHD free convection flow past a moving vertical 

plate. Samad et al. (2013) investigated the effects of MHD free convection heat 

transfer of power-law non-Newtonian fluids along a stretching sheet. 
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The objective of the present problem is to study about the effects of thermal 

diffusion (Soret effect) and heat generation/absorption of an unsteady flow of 

viscous, incompressible, electrically conducting fluid past a semi-infinite vertical 

moving porous plate embedded in a uniform porous medium in the presence of 

thermal radiation. 

7.2 Mathematical Formulation: 

In the present problem we consider free convection two dimensional 

unsteady flow of laminar, incompressible, viscous, electrically conducting, heat 

generation/absorption fluid past a semi-infinite vertical moving porous plate 

embedded in a uniform porous medium subjected to transverse magnetic field in the 

presence of a pressure gradient taking into account the thermal diffusion (Soret 

effect) and thermal radiation effects. The coordinate system is chosen such that  �̅� − 

axis is taken along the porous plate in the upward direction and 𝑦 −axis normal to 

it. The fluid is assumed to be a gray, absorbing-emitting but non-scattering medium. 

The radiative heat flux in the �̅�  −direction is considered negligible in comparison 

with that in the 𝑦 −direction Sparrow and Cess (1995). It is assumed that there is no 

applied voltage of which implies the absence of an electric filed. The transversely 

applied magnetic field and magnetic Reynolds number are very small and hence the 

induced magnetic field is negligible Cowling (1957). Viscous and Darcy resistance 

terms are taken into account the constant permeability porous medium. The MHD 

term is derived from an order-of magnitude analysis of the full Navier-stokes 

equation. It is assumed here that the hole size of the porous plate is significantly 

larger than a characteristic microscopic length scale of the porous medium. We 

regard the porous medium as an assemblage of small identical spherical particles 

fixed in space, following Yamamoto and Iwamura (1976). A homogeneous first-

order chemical reaction between the fluid and the species concentration has been 

considered. The chemical reactions are taking place in the flow and all thermo  
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physical properties are assumed to be constant of the linear momentum equation 

which is approximation. The fluid properties are assumed to be constants except that 

the influence of density variation with temperature and concentration has been 

considered in the body-force term. Due to the semi-infinite place surface 

assumption furthermore, the flow variable are functions of 𝑦 and 𝑡̅ only. The 

governing equation for this investigation is based on the balances of mass, linear 

momentum, energy, and concentration species. Under all the assumptions, the flow 

is depicted mathematically as 

𝜕�̅�

𝜕𝑦
= 0  ,                                                                                                                    (7.2.1) 

𝜌
𝜕𝑢

𝜕𝑡̅
+ �̅�

𝜕𝑢

𝜕𝑦
=

𝜕�̅�

𝜕�̅�
+ 𝜇

𝜕 𝑢

𝜕𝑦
− 𝜌𝑔 −

𝜇

𝐾
𝑢 − 𝜎𝐵 𝑢 ,                                     (7.2.2) 

𝜕𝑇

𝜕𝑡̅
+ �̅�

𝜕𝑇

𝜕𝑦
=

𝜅

𝜌𝐶

𝜕 𝑇

𝜕𝑦
−

1

𝜌𝐶

𝜕𝑞

𝜕𝑦
−

𝑄

𝜌𝐶
(𝑇 − 𝑇∞) ,                                  (7.2.3) 

𝜕�̅�

𝜕𝑡̅
+ �̅�

𝜕�̅�

𝜕𝑦
= 𝐷

𝜕 𝐶̅

𝜕𝑦
+ 𝐷

𝜕 𝑇

𝜕𝑦
 ,                                                                        (7.2.4) 

where �̅�, 𝑦 and 𝑡̅ are the dimensional distances along and perpendicular to the plate 

and dimensional time respectively. 𝑢  and �̅� are the components of dimensional 

velocities along �̅�  and  𝑦  directions, 𝜌  is the fluid density, 𝜇  is the viscosity, 𝐶   is 

the specific heat at constant pressure, 𝜎  is the fluid electrical conductivity, 𝐵   is the 

magnetic induction, 𝐾 is the permeability of the porous medium, 𝑇 is the 

dimensional temperature, D is the coefficient of chemical molecular diffusivity, 

𝐷  is the coefficient of thermal diffusivity, 𝐶  is the dimensional concentration, κ is 

the thermal conductivity of the fluid, g is the acceleration due to gravity and , 𝑞  , R  

are the local radiative heat flux, the reaction rate constant respectively. The term  
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𝑄 (𝑇 − 𝑇∞)  is assumed to be amount of heat generated or absorbed per unit 

volume, Q  is a constant, which may take on either positive or negative values. 

When the wall temperature 𝑇 exceeds the free stream temperature 𝑇∞ , the source 

term when 𝑄 > 0 and heat sink when  𝑄 < 0 . The magnetic and viscous 

dissipations are neglected in this study. It is assumed that the porous plate moves 

with a constant velocity 𝑢  in the direction of fluid flow and the free stream velocity  

𝑈∞  follows the exponentially increasing small perturbation law. In addition, it is 

assumed that the temperature and concentration at the wall as well as the suction 

velocity are exponentially varying with time. 
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Figure 7.2(a): Physical model and coordinate system 
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The boundary conditions for the velocity, temperature and concentration 

fields are given as follows: 

𝑢 = 𝑢  , 𝑇 = 𝑇 + 𝜀(𝑇 − 𝑇∞)𝑒 ̅ , 𝐶̅ = 𝐶̅ + 𝜀(𝐶̅ − 𝐶∞̅)𝑒 ̅ ,    𝑎𝑡 𝑦 =  0  (7.2.5) 

𝑢 → 𝑈∞ = 𝑈 1 + 𝜀𝑒 ̅ , 𝑇 → 𝑇∞, 𝐶̅ → 𝐶∞̅   𝑎𝑠  𝑦  → ∞  ,                                   (7.2.6) 

where 𝑇  and 𝐶̅   are the wall dimensional temperature and concentration, 

respectively, 𝐶∞̅   is the free stream dimensional concentration, 𝑈  and 𝑛 are 

constants. 

It is clear from equation (7.2.1) that the suction velocity at the plate surface is a 

function of time only and under this assumption it takes the following exponential 

form: 

�̅� = −𝑣 1 + 𝜀𝐴𝑒 ̅                                                                                                (7.2.7) 

Where A is a real positive constant, 𝜀  and 𝜀 A are small less than unity and 𝑣   is a 

scale of suction velocity which has non-zero positive constant. 

In the free stream, from equation (7.2.2) we get 

𝜌
𝑑𝑈∞

𝑑𝑡̅
= −

𝜕�̅�

𝜕�̅�
− 𝜌∞𝑔 −

𝜇

𝐾
𝑈∞ − σB 𝑈∞                                                              (7.2.8) 

Eliminating  (𝜕�̅�/𝜕�̅�) from equation (7.2.2) and equation (7.2.8), we obtain 

𝜌
𝜕𝑢

𝜕𝑡̅
+ �̅�

𝜕𝑢

𝜕𝑦
= (𝜌∞ − 𝜌)𝑔 + 𝜌

𝑑𝑈∞

𝑑𝑡̅
+ 𝜇

𝜕 𝑢

𝜕𝑦
+ 𝜎𝐵 +

𝜇

𝐾
(𝑈∞ − 𝑢)   (7.2.9) 

Using the equation of state Hassanien and Obied Allah (2002) 

𝜌∞ − 𝜌 = 𝜌𝛽(𝑇 − 𝑇∞) + 𝜌�̅�(𝐶̅ − 𝐶∞̅) ,                                                           (7.2.10) 

Where 𝛽 is the volumetric coefficient of thermal expansion, �̅� the volumetric 

coefficient of expansion with concentration and 𝜌∞ the density of the fluid far away 

the surface and using equation (7.2.10) in (7.2.9) we get, 
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𝜕𝑢

𝜕𝑡̅
+ �̅�

𝜕𝑢

𝜕𝑦
=

⎩
⎪
⎨

⎪
⎧ 𝑑𝑈∞

𝑑𝑡̅
+ 𝜇

𝜕 𝑢

𝜕𝑦
+ 𝜌𝛽(𝑇 − 𝑇∞)

+𝜌�̅�(𝐶̅ − 𝐶∞̅) +
𝜎𝐵

𝜌
+

𝜈

𝐾
(𝑈∞ − 𝑢)

⎭
⎪
⎬

⎪
⎫

 ,                         (7.2.11) 

where 𝜈 = 𝜇/𝜌 is the coefficient of the kinematic viscosity. The third term on the 

RHS of the momentum equation (7.2.11) denote body force due to non-uniform 

temperature, the fourth term denote body force due to non-uniform concentration. 

The radiative heat flux term by using the Roseland approximation is given by 

𝑞 =
4𝜎

3𝑎

𝜕𝑇

𝜕𝑦
 ,                                                                                                        (7.2.12) 

Where 𝜎 and 𝑎 are the Stefan-Boltzmann constant and the mean absorption 

coefficient respectively. We assume that the temperature differences within the flow 

are sufficiently small such that 𝑇  may be expressed as linear function of the 

temperature. This is accomplished by expanding in a Taylor series about 𝑇∞ and 

neglecting higher order terms, thus 

𝑇 ≅ 4𝑇∞ − 3𝑇∞                                                                                                    (7.2.13)  

With the help of equations (7.2.12) and (7.2.13), the equation (7.2.3) is reduced to 

𝜕𝑇

𝜕𝑡̅
+ �̅�

𝜕𝑇

𝜕𝑦
=

𝜅

𝜌𝐶

𝜕 𝑇

𝜕𝑦
−

16𝜎𝑇∞

3𝜌𝐶 𝑎

𝜕 𝑇

𝜕𝑦
−

𝑄

𝜌𝐶
(𝑇 − 𝑇∞)                            (7.2.14) 

The non-dimensional quantities and parameters are 
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⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧𝑢 = 𝑢𝑈 ,   �̅� = 𝑣𝑉 ,   𝑈 = 𝑈∞𝑈 ,   𝑢 =  𝑈 𝑈  ,   𝑦 =

𝑉 𝑦

𝜈
,

 
𝑇 = 𝑇∞ + 𝜃(𝑇 − 𝑇∞),   𝐶̅ = 𝐶∞̅ + 𝛷(𝐶̅ − 𝐶∞̅),

 

   𝐾 =
𝐾

𝑉
,   𝐺𝑟 =

𝜈𝑔𝛽(𝑇 − 𝑇∞)

𝑈 𝑉
 ,   𝐺𝑚 =

𝜈𝑔�̅�(𝐶̅ − 𝐶∞̅)

𝑈 𝑉
,

𝑡 =
𝑡̅𝑉

𝜈
,   𝑛 =

𝑉

𝜈
,   𝑃𝑟 =

𝜈𝜌𝐶

𝜅
=

𝜈

𝛼
,

  

𝑀 =
𝜎𝐵 𝜈

𝜌𝑉
 ,   𝑅 =

4𝜎𝑇∞

𝑎𝜅
 ,   𝑆𝑐 =

𝜈

𝐷
 ,   𝑄 =

𝑄 𝜈

𝜌𝐶 𝑉
 ,

⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

               (7.2.15) 

 

Taking into account the equation (7.2.7) and with the help of (7.2.15) the non-

dimensional form of the equation (7.2.11), (7.2.14), (7.2.4) are as follows 

𝜕𝑢

𝜕𝑡
− (1 + 𝜀𝐴𝑒 )

𝜕𝑢

𝜕𝑦
=

𝑑𝑈∞

𝑑𝑡
+ 𝑁(𝑈∞ − 𝑢) +

𝜕 𝑢

𝜕𝑦
+ 𝐺𝑟𝜃 + 𝐺𝑚𝜙 ,            (7.2.16) 

𝜕𝜃

𝜕𝑡
− (1 + 𝜀𝐴𝑒 )

𝜕𝜃

𝜕𝑦
=

1

𝑃𝑟
1 +

4𝑅

3

𝜕 𝜃

𝜕𝑦
− 𝑄𝜃 ,                                            (7.2.17) 

𝜕𝜙

𝜕𝑡
− (1 + 𝜀𝐴𝑒 )

𝜕𝜙

𝜕𝑦
=

1

𝑆𝑐

𝜕 𝜙

𝜕𝑦
+ 𝑆

𝜕 𝜃

𝜕𝑦
 ,                                                      (7.2.18) 

where 𝑁 = 𝑀 + 𝐾 ,  Gr is the thermal Grashoff number, Gm is the solutal 

Grashoff number, Pr is the Prandtl number, M is the magnetic field parameter, Sc is 

the Schmidt number, Q is the dimensionless heat generation /absorption parameter, 

𝑆  is the Soret number and R is the radiation parameter. 

The corresponding non-dimensional boundary conditions are 

𝑢 = 𝑈  ,   𝜃 = 1 + 𝜀𝑒 ,   𝜙 =  1 + 𝜀𝑒     𝑎𝑡 𝑦 = 0

𝑢 → 𝑈∞ = 1 + 𝜀𝑒 ,   𝜃 → 0,   𝜙 → 0   𝑎𝑠 𝑦 → ∞ 

 ,                              (7.2.19) 
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7. 3 Method of Solution: 

The equations (7.2.16)-(7.2.18) represent a set of partial differential 

equations and thus in order to reduce these into a set of ordinary differential 

equations in dimensionless form we assume the following for velocity, temperature 

and concentration as, 

⎩
⎪
⎨

⎪
⎧

𝑢 = 𝑢 (𝑦) + 𝜀𝑒 𝑢 (𝑦) + 0(𝜀 )

𝜃 = 𝜃 (𝑦) + 𝜀𝑒 𝜃 (𝑦) + 0(𝜀 )

𝜙 = 𝜙 (y) + εe 𝜙 (y) + 0(ε )⎭
⎪
⎬

⎪
⎫

 ,                                                                 (7.3.1) 

Where 𝑢  , 𝜃  and 𝜙  are mean velocity, mean temperature and mean concentration 

respectively. 

Substituting the equation (7.3.1) into equations (7.2.16)-(7.2.18), equating the 

harmonic and non-harmonic terms and neglecting the higher-order terms of 0(𝜀 ), 

we obtain the following pairs of equations for (𝑢  , 𝜃   𝜙 ) and (𝑢 , 𝜃 , 𝜙 ). 

𝑢′′ + 𝑢′ − 𝑁𝑢 = −𝑁 − 𝐺𝑟𝜃 − 𝐺𝑚𝜙  ,                                                            (7.3.2) 

𝑢′′ + 𝑢′ − (𝑁 + 𝑛)𝑢 = −(𝑁 + 𝑛) − 𝐴𝑢′ − 𝐺𝑟𝜃 − 𝐺𝑚𝜙 ,                        (7.3.3) 

(3 + 4𝑅)𝜃 ′′ + 3𝑃𝑟𝜃 ′ − 3𝑄𝑃𝑟𝜃 = 0 ,                                                                 (7.3.4) 

(3 + 4𝑅)𝜃′′ + 3𝑃𝑟𝜃 ′ − 3𝑃𝑟(𝑄 + 𝑛)𝜃 = −3𝐴𝑃𝑟𝜃 ′  ,                                      (7.3.5) 

𝜙′′ + 𝑆𝑐 𝜙′ = −𝑆𝑐 𝑆 𝜃′′ ,                                                                                       (7.3.6)       

𝜙′′ + 𝑆𝑐 𝜙′ − 𝑆𝑐𝑛 𝜙 = −𝐴𝑆𝑐 𝜙′ − 𝑆𝑐 𝑆 𝜃 ′′ ,                                                  (7.3.7)  

The corresponding boundary conditions are 

𝑢 = 𝑢  ,    𝑢 = 0,    𝜃 = 1 ,   𝜃 = 1 ,   𝜙 = 1 ,   𝜙 = 1     𝑎𝑡   𝑦 = 0

𝑢 → 1 ,  𝑢 → 1,  𝜃 → 0 , 𝜃 → 0 , 𝜙 → 0 , 𝜙 → 0     𝑎𝑠   𝑦 → ∞
, (7.3.8)  
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The solutions of equations (7.3.2) to (7.3.7) with the help of boundary conditions 

(7.3.8) are obtained as follows: 

𝑢 = 1 + 𝐴 𝑒 + 𝐴 𝑒 + 𝐴 𝑒 + 𝐴 𝑒  ,                                            (7.3.8) 

 𝑢 =  
𝐴 𝑒 + 𝐴 𝑒 + 𝐴 𝑒 + 𝐴 𝑒 + 𝐴 𝑒

+𝐴 𝑒 + 𝐴 𝑒 + 𝐴 𝑒 + 𝐴 𝑒 + 𝐴 𝑒

 ,              (7.3.9) 

𝜃 =  𝑒  ,                                                                                                                (7.3.10) 

𝜃 =  𝐿 𝑒 + 𝐿 𝑒  ,                                                                                         (7.3.11)  

𝜙 =  𝑃 𝑒 + 𝑃 𝑒  ,                                                                                         (7.3.12) 

𝜙 =  𝑃 𝑒 + 𝑃 𝑒 + 𝑃 𝑒  ,                                                                      (7.3.13) 

Thus the expression for the velocity, temperature and concentration profiles are as 

follows 

𝑢(𝑦, 𝑡) =

⎩
⎪
⎨

⎪
⎧

1 + 𝐴 𝑒 + 𝐴 𝑒 + 𝐴 𝑒 + 𝐴 𝑒

+𝜀𝑒 (𝐴 𝑒 + 𝐴 𝑒 + 𝐴 𝑒 + 𝐴 𝑒 + 𝐴 𝑒

+𝐴 𝑒 + 𝐴 𝑒 + 𝐴 𝑒 + 𝐴 𝑒 + 𝐴 𝑒 ) ⎭
⎪
⎬

⎪
⎫

 , (7.3.14) 

𝜃(𝑦, 𝑡) = 𝑒 + 𝜀𝑒 𝐿 𝑒 + 𝐿 𝑒 ,                                                         (7.3.15) 

𝜙(𝑦, 𝑡) = 𝑃 𝑒 + 𝑃 𝑒 + 𝜀𝑒 𝑃 𝑒 + 𝑃 𝑒 + 𝑃 𝑒  .               (7.3.16) 

The physical quantities of interest are the wall shear stress is given by  

𝜏̅ = 𝜇
𝜕𝑢

𝜕𝑦
, 

And in dimensionless form we get, 

𝐶 =
𝜏̅

𝜌𝑈 𝑉
=

𝜕𝑢

𝜕𝑦
=  𝑢ˊ(0) 
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 =
𝐴 𝛽 + 𝐴 𝛽 + 𝐴 𝛽 + 𝐴 𝛽 + 𝐴 𝛽 + 𝐴 𝛽 + 𝐴 𝛽

+𝐴 𝛽 + 𝐴  𝛽 + 𝐴 𝛽 + 𝐴 𝛽 + 𝐴 𝛽 + 𝐴 𝛽 + 𝐴 𝛽
       (7.3.17) 

The local surface heat flux is given by 

𝑞 = −𝜅
𝜕𝑇

𝜕𝑦
= −

4𝜎

3𝑎

𝜕𝑇

𝜕𝑦
 

Using equation (7.2.13) the above equation can be written as  

𝑞 = −𝜅 𝜅 +
16𝜎𝑇∞

3𝑎

𝜕𝑇

𝜕𝑦
, 

and its non-dimensional form is 

𝑞 = −
𝜅(𝑇 − 𝑇∞)𝑉

𝜈
1 +

4𝑅

3

𝜕𝜃

𝜕𝑦
 

The dimensionless local surface heat flux that is Nusselt number is obtained as 

𝑁𝑢 =
𝑞

𝜅(𝑇 − 𝑇∞)
 

∴  
𝑁𝑢

𝑅𝑒
=  − 1 +

4𝑅

3

𝜕𝜃

𝜕𝑦
= − 1 +

4𝑅

3
(𝛽 + 𝛽 𝐿 + 𝛽 𝐿 ),          (7.3.18) 

Where,  𝑅𝑒 = 𝑉 𝑥/𝜈   is the local Renolds number. 

The definition of the local mass flux and the local Sherwood number are given by 

𝑗 = −𝐷
𝜕�̅�

𝜕𝑦
 

𝑆ℎ =
𝑗 𝑥

𝐷(𝐶̅ − 𝐶∞̅)
 

∴
𝑆ℎ

𝑅𝑒
= −

𝜕𝛷

𝜕𝑦
= 𝑃 𝛽 + 𝑃 𝛽 + 𝑃 𝛽 + 𝑃 𝛽 + 𝑃 𝛽                          (7.3.19) 
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7.4 Validity: 

In order to verify the accuracy of the present results, we have considered the 

analytical solutions obtained by Kim (2000) for local Nusselt number. These 

compared results are presented in the Table 7.4(a). It is observe form this Table that 

the present results (under some limiting conditions) are in very good agreement with 

those obtained from analytical solutions of Kim (2000), which clearly shows the 

correctness of the present analytical solutions and the available solutions in the 

literature. 

From the Table – 7.4(a), it is seen that a negative increasing has been occurred in 

𝑁𝑢 /𝑅𝑒  when either 𝑃𝑟 or 𝐹 is increased. 

Table 7.4(a) Comparison of analytical results with those of Kim (2000) with 

different values of 𝑃𝑟 for 𝑁𝑢 /𝑅𝑒  when 𝑅 = 0, 𝑡 = 0.2, 𝜀 = 0.001, 𝑛 = 0.2, 𝐴 =

0.05, 𝑄 = 0, 𝑆 = 0, 𝑆𝑐 = 0.6: 

 

𝑷𝒓 Kim (2000) results Present results 

 𝑁𝑢 /𝑅𝑒  𝑁𝑢 /𝑅𝑒  

0.71 0.353081 0.353077 

1.0 0.673049 0.673107 

7.0 1.737483 1.737490 

11.4 3.494173 3.494183 

 

7.5 Results and Discussion: 

In this section, the effects of various physical parameters like magnetic body 

force, porosity, heat generation, thermal radiation and Soret number have been 

discussed on the flow velocity, temperature, concentration, skin friction and Nusselt 
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number. All the numerical calculations are done with respect to air (Pr = 0.71) at 

20oC and steam (Sc = 0.60). 

Fig. 7.4 (i), analyses that the velocity distribution has been decreased due to 

the effect of magnetic drag force (M), which resists the motion of the flow due to 

Lorentz force. 

The effect of heat generation (Q) on the flow velocity and temperature are 

presented in Figs. 7.4 (ii) and 7.4 (iii) respectively. Both the momentum and thermal 

boundary layers are reduced for the effect of heat generation and consequently the 

velocity and temperature profiles are decreased by the increasing values of heat 

generation parameter. 

In Fig. 7.4 (iv), it is observed that an increase in radiation (R) leads to 

decrease the flow velocity. 

In Fig. 7.4 (v), the porosity of the medium has increased the flow velocity in 

the momentum boundary layer. 

The Soret (S0) effect on the velocity, concentration and Sherwood number 

have been plotted in the respective Figs. 7.4 (vi), 7.4 (vii) and 7.4 (viii). The 

velocity has been elevated for the increasing values of S0 and attain its peak values 

near the plate (y = 0). The similar effect is also observed for concentration profiles, 

but the graphs of the concentration have been depressed sharply for greater values 

of the distance (y). Moreover, the negative increasing effect (decreased in 

magnitude) for the Soret number has been observed in the Sherwood number, 

whereas Sherwood number is substantially increased when the Schmidt number is 

gradually increased. 

In Fig. 7.4 (ix), the Skin friction (𝜏) at y = 0 for Q and S0 is plotted. Due to 

Soret effect, the skin friction has been increased near the plate y = 0, but a reverse  
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trend has been observed away the plate. However, 𝜏 has a negative depression for 

Q[0, 3] and has a positive escalation for Q[3, 6]. 

Nusselt number (Nu) for R and Q is displayed in Fig. 7.4 (x). Due to heat 

generation, the Nusselt number is substantially increased in presence of thermal 

radiation. 

 

 

Fig. 7.4 (i): Velocity distribution on M 
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Fig. 7.4 (ii): Velocity distribution on Q 

 

 

Fig. 7.4 (iii): Temperature for Q 
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Fig. 7.4 (iv): Velocity distribution on R 

 

 

Fig. 7.4 (v): Velocity distribution on K 
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Fig. 7.4 (vi): Velocity distribution for S0 

 

 

Fig. 7.4 (vii): Concentration for ∅ 
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Fig. 7.4 (viii): Sherwood number for Sc and S0 

 

 

Fig. 7.4 (ix): Skin friction for Q and S0 

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.1 0.2 0.3 0.4 0.5 0.6

Sh
x 

 /
R

e x

Sc

S0=0

S0=2

S0=4

S0=6

-22

-18

-14

-10

-6

-2

2

6

10

14

18

0 2 4 6 8 10Cf

Q

S0=0

S0=2

S0=4

S0=6



133 
 

 

 

Fig. 7.4 (x): Nusselt number for R and Q 

7.6 Conclusions: 

The present study brings out the following significant findings: 

 The heat generation has a decelerating effect on the flow velocity. This 

decreases the temperature as well. But this heat generation raises the 

temperature gradients. 

 The porosity parameter, the more sharply is the elevation in velocity. 

 Transverse magnetic field produces a type of resistive force which opposes 

the flow. This contributes to the thickening of the thermal and mass 

boundary layer which in turn, reduces the rate of heat and mass transfer. 

 The increase of Soret effect is seen to accelerate the flow velocity, species 

concentration as well as the concentration gradients.  
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