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CHAPTER 1 

INTRODUCTION AND MOTIVATION
 

1.1 INTRODUCTION 

The study of Solitons as a stable particle has caught the imagination of 

Mathematicians, Condensed Matter Physicists, Biologists, Information Scientists, 

Economists, Stock Theory analysts, Oceanographers, Geologists to name just a few. 

Solitons are solitary waves which are known to propagate for very large distances in 

nonlinear media.  Solitons were first observed in the year 1834 by a young Scottish 

engineer,  John Scott Russell [108] while observing the movement of a barge in a 

canal. The problem before the mathematicians was how to account for the observation 

of John Scott Russell. What is important is that wave equations known at that time did 

not admit Soliton solutions. Thus it was particularly important to derive a wave 

equation which admits Solitary wave Solutions. In 1895 Kortweg de Vries, a Dutch 

mathematician derived the equation [42] of propagation of waves in a shallow water 

canal. These equations were nonlinear which came to be known as KdV equations 

admit Soliton solutions. In 1955, Fermi, Pasta, and Ulam [96] were investigating the 

energy distribution in a linear system with a nonlinear term added as a perturbation. In 

the absence of the perturbation the energy in each normal mode would be constant.  

When the nonlinear perturbation is turned on it is found that the energy does not 

spread to all the modes but remains in the initial mode and a few nearby modes. 

Further the energy density of these nearby modes has an almost periodic nature. This 

finding was not just characteristic of the FPU system but all nonlinear differential 

equations. While in a linear system the energy density of a mode remains constant, in 

a nonlinear system the energy density of a mode has an oscillatory behavior. The focus 

now shifted to the role of the nonlinear term in the nonlinear differential equation, 

particularly in the KdV equation. Zabusky and Kruskal  [97] performed a numerical 

study on the KdV equation. They found that in a certain range the third order 

derivative balances the nonlinearity. When this happened they found that the solution 
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assumes the shape of the Soliton. Via numerical simulation Zabusky and Kruskal had 

unearthed a very crucial feature of nonlinear differential equations: the energy lost in 

propagation is compensated by the energy generated by the nonlinear term.  

 It was obvious from the results of FPU, Zabusky and Kruskal that to 

understand nonlinear differential equations one must look into the Fourier domain. 

The question was can one develop equations equivalent to the nonlinear differential 

equation. Zhakarov and Shabat [133] first found the coupled equations which was 

equivalent to the nonlinear differential equations. AKNS [3] showed that these 

coupled equations correspond to rotations in the potential space. The potential was in 

fact the solution of the nonlinear differential equation.  In fact one of the results is that 

they constructed the solution of the nonlinear differential equation as Fourier 

summation of the scattered waves from the potential. This equation was of 

fundamental significance in the field. It immediately gave rise to the principle of 

causality for nonlinear systems: the Gelfand-Levitan equation [25].  

 It was at this point noted condensed matter physicists James Krumhansl and J. 

R. Schrieffer [80] wrote their seminal paper on Statistical Mechanics of One 

Dimensional Systems. Krumhansl and Schrieffer considered a one dimensional array 

of masses interacting via a double well potential. They showed that such a system 

admits tanh Solitons. Further they showed that the observed behavior of the central 

peak in NMR can be accounted for by Solitons. Schrieffer followed this by another 

landmark paper namely one on Poly-acetylene. This paper elegantly computed the 

effect of Solitons on the electronic band gap of Poly-acetylene. Solitons compress the 

lattice and produce mid-gap states which may or may not have spin and charge. When 

the mid gap state de- excites it produces a charged or uncharged Soliton with or 

without spin. These Soliton states have in fact been observed in Poly-acetylene and 

other systems. The effect of this paper on the experimentalists was immense. The 

central point was to exploit the coupling between mid gap states and Solitons. If via 

Solitons one can produce mid gap states then it stands to reason that in sandwich 

systems one can produce mid gap state in one system and upon de-excitation produce 

Solitons in another system. Further if the mid gap states are made to absorb energy 
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(solar energy for example), upon de-excitation the energy can be stored in the form of 

Solitons in some other media such as Lithium Niobate from where it can be later 

extracted in the form of current. Via such sandwich materials one can store solar 

energy and use it later. It now became clear that Solitons and its physics had been 

understood and the focus had shifted to its applications. As pointed out earlier the 

concept of Solitons has found application in diverse areas. Biologists find Solitons in 

the DNA lattice [128]. These Solitons induce conformational changes when a protein 

approaches. This forms the basis of intra cellular communication. The progress of 

Solitons on a DNA lattice, their interactions can be described in terms of Feynman 

diagrams. There are thus minimum set Feynman diagrams for the sustenance of 

cellular life. On the other hand inhibition of Solitons in the DNA (such as by binding 

of a ligand to DNA) can thus bring about cellular death. 

 Similarly light propagates as Solitons in Optical Fibers [50,95]. Information in 

the form of packets is sent as Solitons through the Optical Fibers. As Solitons travel 

with the speed of light such networks offer very high speed connectivity and high 

bandwidth. Solitons thus became a better substitute for electrons in printed circuit 

boards with one added advantage: distance. This opened the way for distributed 

printed circuit boards connected via Optical fibers. Applications of Solitons thus 

started appearing in almost every field. Oceanographers found that Tsunamis are 

Solitons as a result they propagate incredibly large distances (8000 km) without 

change of shape. In this thesis we concentrate on only one aspect:  Nonlinear 

Differential Equations and their Soliton Solutions. The chapters of the thesis illustrate 

the various features of Nonlinear Differential equations. 

1.2 AIMS AND OBJECTIVES 

1.2.1  To find numerically Soliton solution of Nonlinear Schrodinger equations 

1.2.2  To find long wave length Soliton solution of Navier Stokes equations. 

1.2.3 To find the long wave length Soliton solution for the KdV equations. 

1.2.4 To find Soliton solution of Sine Gordon equations in the long wavelength  limit 

1.2.5 To solve the Sine Gordon equation (unperturbed and perturbed)  
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1.2.6 To find Soliton solution in nonlinear Optical lattices. 

1.2.7 To find Soliton solutions in Long Josephson junctions in a magnetic Field 

1.2.8 To find the Vortex Soliton solution in Poly-acetylene. 

1.3 EXPECTED OUTCOME 

1.   We can apply the method of Sakaguchi and Malomed to various nonlinear 

differential equations and find Solitons Solution in Long Wave length limit.  

2.    Appropriate redefinition of variable may be required to obtain the equivalent 

Schrodinger equation (as in Navier Stokes Equation). In this form the array of 

infinite conservation laws are applicable.  

3.  In the case of the nonlinear optical lattice we observed that the Lagrangian of the 

one dim nonlinear optical lattice corresponds to that of a double well potential, 

hence following J. A. Krumhansl and J. R. Schrieffer, we postulated the 

presence of tan hyperbolic domain wall solitons in nonlinear optical lattices. 

This conjecture is also verified via experimental result. 

4.  In Poly-acetylene cis and trans state represents diametrically   opposite 

orientation and hence are separated by Soliton like profiles (Su, Schrieffer and 

Heeger (SSH)) 

5. This study will present a systematic method of finding Soliton Solutions (via 

both analytical and numerical methods) of certain nonlinear differential 

equations (both perturbed and unperturbed) in the long wavelength limit.  

1.4 MATERIAL AND METHODS. 

Discretized nonlinear differential equations (KdV and nonlinear Schrodinger 

equation) have been solved by many authors. In this paper we have solved nonlinear 

differential equations via lattice discretization. This is done by first removing the time 

dependence of the differential equation and then invoking lattice discretization [123]. 

This results in a difference equation. For nonlinear equations, lattice discretization 

results in a nonlinear difference equation which is solved by first taking a Z transform, 
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then taking the inverse Z transform we get the solution. A MATLAB program has 

been written which solves the difference equation and plots the solutions from the 

recurrence relation itself. Via this technique we have solved Nonlinear Schrodinger 

equation, Toda Lattice equation of motion and Klein-Gordon equation. In each of 

these cases we have obtained Soliton solutions [Chapter 3]. 

Sakaguchi and Malomed [110] have obtained long wavelength expansion of 

the Gross-Pitaevskii equation. By following this method in the case of KdV equation 

we obtain (comparing coefficients) the effective equations in the long wavelength 

region [Chapter 5].  The effective equation is put in the form of a conservation law 

(using the technique of Zabusky and Kruskal [131]. The spatial component of the 

conservation law is an eigenvalue equation. For the KdV equation the eigenvalue 

equation is the Schrodinger equation. (Note that for Sine-Gordon, Navier–Stokes some 

variable transformations or averaging of variables over both space and time are 

required to obtain the equivalent Schrodinger equation.) The important point is that 

in the asymptotic limit (we find) the nonlinear differential equation becomes 

equivalent to the Schrodinger equation. In each case the Schrodinger equation is 

solved and the Green’s function obtained from the eigen-functions. We extend this 

technique to Sine Navier Stokes [Chapter 4] and Gordon [Chapter 6], equations. In 

each case we find bound states of the system.  

From the Gross-Pitaevskii equation for nonlinear optical lattice we derive the 

Hamiltonian for the double well model. This model is solved to obtain tanh domain 

wall soliton solutions which have been observed and also derived by other authors 

using a different model. The domain wall soliton solutions predict lattice 

compressibility which has been observed. [Chapter 7] 

Recently [114] have found spectacular series of phase jumps in electrons 

passing through a Josephson junction in a magnetic field. We propose that these jumps 

occur due to electrons escaping from a potential well formed by a kink anti kink pair 

and crossing the Josephson junction [Chapter 8]. Josephson junction is governed by 

Sine Gordon Equation. We first solve the Sine Gordon equation in the long 

wavelength limit following the technique first outlined by Sakaguchi and Malomed 
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[110] in their classic paper. Via this technique we find the Green’s function in the long 

wave length limit. This agrees very well with Greens functions computed intuitively 

with approximate Green’s functions of electrons in Josephson junctions. This therefore 

establishes that the approach adopted here is indeed correct. Thereafter one computes 

the bound states of the kink anti kink pair. Thereafter one uses the fact that bound 

states decay. In other words the electron escapes from the kink anti kink potential. The 

Gelfand-Levitan equation is applied to this process to obtain the phase jumps. 

 Solitons in conducting polymers have been attracting considerable attention in 

recent years. In these conducting polymers, Poly-acetylene is a particularly important 

example. Each carbon atom in a pure trans-polyacetylene contributes only a single 

p electron, and  band is only half full. We find vortex Soltons in Poly-acetylene 

[chapter 9] 

 Ablowitz, Kaup, Newell and Segur (AKNS) and also Zhakarov and Shabat 

[133] have shown that both temporal and spatial evolution equations are associated 

with a nonlinear differential equation. These evolution equations are linear Eigenvalue 

equations. For the unperturbed Sine-Gordon equation, the spatial evolution 

equation may be interpreted as a rotation in the potential space. In fact this 

conclusion should not come as a surprise as the Quantum Mechanical Schrodinger 

equation can be interpreted as a rotation in the Hilbert space. Hence the time evolution 

of the equivalent Schrodinger equation should be given by an appropriate rotation in 

the corresponding Hilbert space. This precisely is the finding of AKNS. In fact this 

angle of rotation in the potential space can be computed from the equivalent 

Schrodinger equation picture.  And temporal evolution is the same as a rotation matrix 

in potential space through an angle u. We solve for the Eigen values for this rotation 

operator. The Eigen values, which are in the form of operators, are solved. Via this 

technique we will solve the perturbed Sine-Gordon equation. In the small amplitude 

limit we recover the kink solution of the Sine-Gordon equation implying that the 

operator approach employed here is correct [Chapter 10]. This result implies that 

volution of certain nonlinear differential equation can be thought of as a 

transformation of the potential space.  
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1.5 IMPORTANCE OF THE PRESENT WORK. 

 In recent years, there has been an increased interest in the study of nonlinear 

phenomena. These systems exist in all research fields, such as fluid mechanics, 

elastic media, optical fibers, nuclear physics, relativistic quantum mechanics, 

high-energy physics, plasma physics, biology, solid-state physics, chemical 

kinematics, chemical physics, geochemistry, etc. Emphasis is put particularly 

on seeking explicit solutions for non-linear evolution equations. A variety of 

methods were devoted to studying different types of nonlinearities of optical 

materials and they have played (and still play) a major role in mathematical 

physics. In fact, scholars have been interested in the study of localized 

structure of waves, which ignore dispersion or diffraction processes. We will 

only highlight the importance of Solitons in real life where the nonlinearity 

plays an important role. It is said that soliton is a bridge between Mathematics 

and Physics 

 The method is also applied to Long Josephson junctions in a magnetic field. 

 Optical Solitons are an interesting subject in optical fiber communication 

because of their capability of propagation over long distance without 

attenuation and changes in shapes. 

1.6 MOTIVATION. 

 The motivation for this work came from our efforts to understand the Soliton 

and its interactions. H. Sakaguchi and B.A Malomed [111] in their treatment of the 

Gross-Pitaevskii equation had developed a very interesting approach to obtain the long 

wavelength solution. We extended this approach to other nonlinear differential 

equations. Further H. Sakaguchi and B.A Malomed   converted the nonlinear 

differential equation for nonlinear optical lattices into an equivalent Lagrangian. We 

noticed that this Lagrangian was that same as that of a double well potential and hence 

would admit domain wall solutions. This in fact was the case.  

 

The spatial and temporal evolution equations corresponding to Sine Gordon and Sinh 

Gordon equation were interpreted as rotations in the potential space. This gave the 
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idea that these operators can be solved for eigenvales in terms of the operators. The 

resulting operator equation can then be solved. It turned out that this was indeed 

possible. Nonlinear optical crystals are extremely fascinating. The underlying 

materials of these crystals are highly polarizable which respond to the electric fields of 

incident laser light in a time scale of attoseconds (
1810 s

)  It is this attosecond 

response time which has allowed us to propose that these crystals can be used as very 

fast optical switches  Now this polarization induced by the incident laser light 

propagates in the material as a Soliton and it can be modulated. We note that Solitons 

(which are essentially waves) have both spin  and charge . This has been first 

elaborated by Schrieffer et al. [119]  This feature allowed us to propose the concept of 

very fast optical switches and massively parallel computing. Solitons are known to 

exist in the DNA. We identify Solitons with jumping genes and suggest that they are 

responsible for onset of cancer. 

1.7 LIST OF NONLINEAR DIFFERENTIAL EQUATIONS USED IN THIS 

THESIS 

1. KdV Equation 

            6 0t xxx x      

2. MKdV Equation 

26 0t xxx x       

3. Nonlinear Schrodinger Equation (NLSE) 
2

0t xxi     
 

4. Sine Gordon Equation. 

sin 0tt xx      
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5. Phi four Equation 

3 0tt xx        

 

6. Navier Stokes Equation
 

. .
v

v v p T f
t


 

      
 

 

7. Toda Lattice: 

..

( )=exp( ( 1)- ( ))-exp ( ( )- ( 1) n n n n n        

8. Klein-Gordon equation 
2

xx tt =m    

9. The perturbed Sine-Gordon equation. 

 
sintt xx t xxt F             

 

 

 

 

 

 

 

 

 

 

 

 

 


