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CHAPTER 10 

SOLITON SOLUTION OF THE UNPERTURBED SINE-GORDON AND 

PERTURBED SINE-GORDON      EQUATION 

 

10. 1 INTRODUCTION:  

 In this chapter we find the solution of the Unperturbed Sine-Gordon And 

Perturbed Sine-Gordon Equation. Ablowitz, Kaup, Newell and Segur (AKNS) and 

also Zhakarov and Shabat (ZS) have shown that both temporal and spatial evolution 

equations are associated with a nonlinear differential equation. These evolution 

equations are linear Eigenvalue equations. For the unperturbed Sine-Gordon equation, 

the spatial evolution equation may be interpreted as a rotation in the potential space. 

And temporal evolution is the same as a rotation matrix in potential space through an 

angle u. We solve for the Eigen values for this rotation operator. The Eigen values, 

which are in the form of operators, are solved. Via this technique we solve the 

perturbed Sine-Gordon equation. In the small amplitude limit we recover the kink 

solution of the Sine-Gordon equation implying that the operator approach employed 

here is correct. This result implies that evolution of all nonlinear differential equation 

can be thought of as a transformation of the potential space. 

10.2. PERTURBED SINE-GORDON      EQUATION 

The perturbed Sine-Gordon equation is [74]  

sintt xx tu u u u        
 (1) 

Where x ∈R, α ≥ 0, γ ∈R  are constants   is a small parameter and    depends upon 

various external variables. The terms on the right hand side is zero we get  the 

(unperturbed) Sine-Gordon equation. In view of its importance, the perturbed Sine-

Gordon equation, has been studied by various authors [37,40, 24]. To obtain a solution 

for  ( 0  ) one first solves the ( 0  ) equation. The solution of the Sine-Gordon 
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equation is a kink. In a multiple scale analysis [98, 5], one expands the solution u  as     

0 1u u u   (2) 

where
0u is  the original solution (kink solution) of the Sine-Gordon equation and 

1u  

provides a dressing term. However the major difference between D.J Kaup and El-

sayed Osman [73, 74] and multiple scale analyses [98, 5] is that [74] convert the 

equation for 
1u  into an eigenvalue equation. The solution of the complete equation is 

obtained in terms of these eigenvalues. As the approach of [74] is more general we opt 

for this approach in finding the approximate solution of the perturbed Sine-Gordon 

equation. 

 In a classic paper M. Ablowitz, D. Kaup, A. Newell, A. Segur [9, 4], hereafter 

AKNS, developed a unique method of solving nonlinear differential equations. In their 

method, one has to solve eigenvalue equations corresponding to the nonlinear 

differential equations. The solution to the nonlinear differential equation is the 

potential in the eigenvalue equations. Both AKNS [9, 4] and also ZS [81] have shown 

that both temporal and spatial evolution equations are associated with a nonlinear 

differential equation. These evolution equations are linear eigenvalue equations. For 

the unperturbed Sine-Gordon equation, the spatial evolution equation has operators. 

We solve for the eigenvalues for this operator equation. The eigenvalues, which is in 

the form of operators, is now solved.  

10.3 EIGENVALUES OF THE SPATIAL EVOLUTION EQUATION 

The ZS equations (in case of perturbed Sine- Gordon) are 
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where the potentials ( , ), ( , )q x t r x t are taken as usual to be rapidly decaying smooth 

functions. To obtain the Sine-Gordon equation from (3) we take the transformations as 

taken by AKNS [3]. 
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This may be written as 

 x T     (6) 

where 2
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and 
1

2






 
  
  is called the state vector

  (8) 

Similarly the temporal evolution is given by 

 ( )t R u     (9) 

where
cos( ) sin( )

( )
sin( ) sin( )4

u ui
R u

u u

 
  

 
       (10) 

where ( )R u is the rotation matrix in the u space by angle u . Temporal evolution simply 

rotates the state vector   by the angle u. Rotation in the u space generates the time 

derivative. This is analogous to quantum mechanics where the time evolution of a 

quantum state can be viewed as rotation in the Hilbert space [80].  As both T and R (u) 

operators are in the Hilbert space they can be written as eigenvalue equations namely 

xT           (11) 

( ) tR u           (12) 

Further, we look for travelling wave solutions of the type ( )f x vt . This implies 
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   (13) 

By differentiating (11), (12) and using (6) we obtain 
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2 2

tt x v     (14) 

We solve equation (11) for the Eigen value
x . The Eigen value 

x  is in terms of 

operators
xu . We solve the operator equation and substitute in (20). Equation (20) is 

then solved using approximate methods developed by Kaup and El-sayed Osman [73, 

74]. The Eigenvalues 
x  are given by 

 
 

1/2
2 24

2

x

x

u


 
   (15) 

Now (11) may be written as 

 x x      (16) 

The solution of this equation is 

 0
xx

e
     (17) 

Taking the log of both sides we obtain 

 
0

ln x x





   (18) 

Using the value of x in (6) and simplifying we obtain 
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which gives the integral 
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The solution of (20) is [128] 

  snu a b     (21) 

Note that for low amplitudes sn( b  ) =  sin( b ) For larger amplitudes one has sn( b  ) 

= tanh( b ). We confine ourselves to the large amplitude limit. 
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Figure 1 

where  sn b is the elliptic sine function and   is determined in the next section. Note 

that this is the inverse rotation which relates the potential to the state vector . We find 

that the solution of the perturbed Sine-Gordon is 
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  (22) 

In the small amplitude limit, we find 

 sina s    (23) 

where 
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We note that for small , s  
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 tan( )  , sin( )s s   (25) 

Using (25) in (23) we find 

 tan( ) s   tan( ) sin( )s   

 or  arctan sin s    (26) 

Hence the solution become (for small s)  

 
0

2
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4
arctan exp ( )x x v t

v
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  (27) 

In the small amplitude limit we recover the kink solution of the Sine-Gordon equation. 

We note that the functional form of (27) is different from the kink solution of the 

unperturbed Sine-Gordon equation. However for the solution to be valid for larger 

amplitudes function we have to use the elliptic function solution. 

10.4 PERTURBATION EXPANSION 

 In this section we determine the temporal evolution of the state vector  using 

the Perturbation methods of [74], We now use the results of (21) in (20) to obtain 

2 2

tt x v    
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        (28) 

Put  
0

exp ux





    (29) 

in (28) to obtain 
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  (30) 

Hence  

  2 2 2

0 exptt v u ux      (31) 

Now we wish to obtain express (31) in terms of u  as the external forces will be in 

terms of u . Differentiating (29) and substituting in (31) we 

obtain
2 2 2 2 2 0t ttu u v u       (32)   

Following [96] we expand  
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2

0 1 2( , ) ( ) ( , ) ( , ) ......u x t u x u u           (33) 

where 2

0 1 1 2( ) ( ) ..........t t           (34) 

0 0
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

 
   (35) 

where
0v  is the zero order velocity of kink. For perturbation theory, it is convenient to 

replace the temporal derivatives by spatial derivatives to obtain  
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Using the expansions (33), we obtain zeroeth order equation from (36) as  
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The first order equation is given by 
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        (38) 

We expand the kinks velocity as  

 2

0 1 2 .....v v v v        (39) 

Further we expand each ,i iu v in a series as follows 

(0) (1) ...... 0,1,2...i i iu u Ru i     (40) 

(0) (1) ...... 0,1,2...i i iv v Rv i            (41) 

Using the Perturbation expansion  

for the zeroth order we get    
0

2 2
2 (1) (1) (1) (1)

0 0 0v u v u uu            (42) 

Define the operator (0)

0L v u            (43) 

Then the eigenvalue equation becomes 

   
0

2 2
(0) (1) 2 (1) (1)

0 0L u v u          (44) 

Now (42) may be written us  
   
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 


       (45) 
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On simplifying (45) we get 
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0 2
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u
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
         (46) 

Now from (29), on using the perturbation expansion we get 

  (1)

0 0exp u x     (47) 

Using (46) in (47) we obtain         
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exp ( )x x v t

v
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
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 (48) 

10.5 CONCLUSION 

  Both AKNS and ZS have shown that with a nonlinear differential equation can 

be associated with a spatial and temporal evolution equation. For the unperturbed 

Sine-Gordon equation the temporal evolution equation corresponds to a rotation in the 

potential space. We determine the Eigenvalues of the spatial evolution operator (6) in 

terms of the operators xu . The equation is thus solved to obtain the potential in terms of 

the state vector. By requiring travelling wave solution of the form ( )f x vt equation 

(20) is solved via the perturbation expansion of [40] to obtain the time evolution of the 

state vector. This technique can be generalized to obtain the solution of other nonlinear 

differential equations. 

 

 

 


