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CHAPTER 8 

LONG JOSEPHSON JUNCTIONS IN MAGNETIC FIELD 

8.1. INTRODUCTION 

Recently have found spectacular series of phase jumps in electrons passing 

through a Josephson junction in a magnetic field. We propose that these jumps occur 

due to electrons escaping from a potential well formed by a kink anti kink pair and 

crossing the Josephson junction. Josephson junction is governed by Sine Gordon 

Equation. We first solve the Sine Gordon equation in the long wavelength limit 

following the technique first outlined by Sakaguchi and Malomed in their classic 

paper. Via this technique we find the Green’s function in the long wave length limit. 

This agrees very well with Greens functions computed intuitively with approximate 

Green’s functions of electrons in Josephson junctions. This therefore establishes that 

the approach adopted here is indeed correct. Thereafter one computes the bound states 

of the kink anti kink pair. Thereafter one uses the fact that bound states decay. In other 

words the electron escapes from the kink anti kink potential. The Gelfand-Levitan 

equation is applied to this process to obtain the phase jumps. 

 We develop a model to account for the recently observed phase jump of 

electrons in Josephson Junction, in a magnetic field, as the electrons cross the junction. 

We suggest that electrons are trapped in the potential formed by a kink anti-kink pair. 

When the electron escapes from this potential well it suffers a potential jump as it 

crosses the junction. Electrons at lower depths suffer greater potential jumps. The 

potential jumps were evaluated by using the Lax pair for the Sine Gordon equation and 

then using Gelfand-Levitan equation on the bound states formed by the kink-anti kink 

pair. 

8.2 LATTICES 

Lattice model is a physical model that is defined on a lattice, as opposed to the 

continuum of space or space-time. Lattice models originally occurred in the context of 

condensed matter physics, where the atoms of a crystal automatically form a lattice. 

Currently, lattice models are quite popular in theoretical physics, for many reasons. 
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Some models are exactly solvable, and thus offer insight into physics beyond what can 

be learned from perturbation theory. Lattice models are also ideal for study by the 

methods of computational physics, as the discretization of any continuum model 

automatically turns it into a lattice model. Examples of lattice models in condensed 

matter physics include the Ising model, the Potts model, the XY model, the Toda 

lattice. The exact solution to many of these models (when they are solvable) includes 

the presence of solitons. Techniques for solving these include the inverse scattering 

transform and the method of Lax pairs, the Yang-Baxter equation and quantum 

groups. The solution of these models has given insights into the nature of phase 

transitions, magnetization and scaling behavior, as well as insights into the nature of 

quantum field theory. Physical lattice models frequently occur as an approximation to 

a continuum theory, either to give an ultraviolet cutoff to the theory to prevent 

divergences or to perform numerical computations. An example of a continuum theory 

that is widely studied by lattice models is the QCD lattice model, a discretization of 

quantum chromo dynamics. More generally, lattice gauge theory and lattice field 

theory are areas of study. Lattice models are also used to simulate the structure and 

dynamics of polymers. Examples include the bond fluctuation model and the 2nd 

model 

8.3 JOSEPHSON JUNCTION  

 Josephson junction has been studied by a number of authors [66, 11, 48, 67]. 

Further Solitons in Josephson junctions has been both predicted [84, 12, 85] and found 

experimentally [84, 12]. Josephson Junctions are described by Sine Gordon equation 

which has kink Soliton solutions.  
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Figure 1. 

JOSEPHSON JUNCTIONS 

8.4 PHYSICAL BASIS 

 

 

 

 

 

 

 

Figure 2 

These Solitons tunnel through the Josephson junction barrier.  A detailed numerical 

analysis of Josephson tunnel junctions has been done by Lomdahl, Soerensen and 

Christiansen [85]. They find comprehensive numerical evidence of Solitons in both 

long and intermediate junctions. Charge Soliton Solutions have been found by Ziv 

Herman, Eshel Ben-Jacob and Gerd Schon [135] for serially coupled Josephson 

junctions. T. Doderer et. al. [41] have experimentally stimulated Solitons in Josephson 

kink Anti-kink 

Energy Levels 
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junctions and studied their dynamics. They find that the junction properties are 

accurately described by the perturbed Sine Gordon equation. 

 Recently [120] have found spectacular series of phase jumps in electrons 

passing through a Josephson junction in a magnetic field. We propose that these jumps 

occur due to electrons escaping from a potential well formed by a kink anti kink pair 

and crossing the Josephson junction. We first solve the Sine Gordon equation in the 

long wavelength limit following the technique first outlined by Sakaguchi and 

Malomed [61] in their classic paper. Via this technique we find the Green’s function in 

the long wave length limit. This agrees very well with Greens functions computed 

intuitively with approximate Green’s functions of electrons in Josephson junctions. 

This therefore establishes that the approach adopted here is indeed correct. Thereafter 

one computes the bound states of the kink anti kink pair. Thereafter one uses the fact 

that bound states decay. In other words the electron escapes from the kink anti kink 

potential. The Gelfand-Levitan equation is applied to this process to obtain the phase 

jumps. 

8.5 SOLUTION OF THE SINE GORDON EQUATION IN ASYMPTOTIC 

LIMIT  

The Sine –Gordon equation is 

 

2 2

2 2
sin 0

t x

 


 
  

      (1) 

We look for solutions of the form [111] 
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For n=0 
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Assume a travelling wave solution  
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The solution of (25) must be of the form 
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We now derive the conservation equation corresponding to (21). Using 
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we obtain 
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In the   space the eigen value equation is 
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Since we are interested in the asymptotic limit, we take the t =0 solution of (17) as the 

effective potential in (22). The equation to solve is  
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Equation (17) becomes 
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Taking the inverse transform 
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The Green’s function is 
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Eqn. (23) is the Green’s function of an electron in a Josephson junction. The above 

result could have been derived intuitively by noting that the wave function of an 

electron in a Josephson junction is ( ) kr e  


 

The Green’s function may now be written as  

'' ( )( , ) k

k
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Thus the result derived in (23) is in agreement with (24) derived from basic physical 

considerations. 

8.6 LAX OPERATERS 

The Lax operators for the Sine Gordon equation are 
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Let ( , )k t be a soliton solution of the Sine Gordon equation.  Since the Soliton is a 

localized solution we must have 

( , ) ( , ) ikxk t a k t e as x 
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Now the time evolution of ( , )k t is given by  
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Assuming the operator B is time independent we obtain 
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where u is the kink solution of the Sine Gordon equation. Using  (37) – (39) we obtain 
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8.7 BOUND STATES OF THE KINK-ANTIKINK 

Kink and anti kink form a potential well which can be approximated by a harmonic 

oscillator type of well. Such a well will have bound states. Let ( ,0)n x be the bound 

state . Now the bound state wave function satisfies the boundary conditions 
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 (33)    

where (0)nR and (0)nT are normalization constants. The time evolution of the bound 

state wave function is given by 
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Note the replacement of k by niK . The normalization constant is 
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This simple result tells us that the bound state decays exponentially in time – a fact 

that has been verified via numerous experiments. 

 

8.8 GELFAND-LEVITAN EQUATION 

In the inverse scattering method the Gelfand-Levitan equation is used to determine the 

scattering potential V(x,t) for all x,t. The scattering potential satisfies  
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where ( , )g x y , for x < y, is the solution of the Gelfand-Levitan equation. Note that 

causality is built into the system via the inequality. The Gelfand-Levitan equation is 
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To solve (38) we take ( ,0) 0R k  and the bound state energy as
2K . We then obtain 
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Since we know that a bound state has an exponential decay we can write 
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We then obtain 
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 Expanding the numerator one obtains 
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Note that 3h has been defined in (28). Each term in causes a phase jump. Phase jumps 

in the electron wave functions have recently been observed [120]. 

 

8.9 CONCLUSION 

 We have solved the Sine Gordon equation in the long wavelength 

approximation using the methods of Sakaguchi and Malomed [111]. The Greens 

function so obtained is found to agree with results obtained on the basis of wave 

functions of electrons in a Josephson junction. Now the Sine Gordon equation admits 

both kink and anti-kink solutions. A kink and anti-kink can form a potential well 

analogus to harmonic oscillator potential. An electron can get trapped in suc a well. 

We use the Gelfand –Levitan equation to find the amplitude for the electron to tunnel 

form kink-anti kink potential to a free state. The solution shows that there is phase 

jump in the wave function of the electrons as they tunnel through the junction. This 

phase jump has recently been observed. 


