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CHAPTER 2 

REVIEW OF  LITERATURE  

 

2.1 HISTORICAL OVERVIEW OF SOLITONS.  

 

 The first recorded solitary wave [91] was observed in the 1834 when a young 

engineer named John Scott Russell was hired for a summer job to investigate how to 

improve the efficiency of designs for barges that were designated to ply canals 

particularly the Union Canal near Edinburgh, Scotland. One August day, the tow rope 

that was connecting the mules to the barge broke and the barge suddenly stopped—but 

the mass of water in front of its blunt prow "... rolled forward with great velocity, 

assuming the form of a large solitary elevation, a rounded, smooth and well defined 

heap of water, which continued its course along the channel without change of form or 

diminution of speed." [109] 

Russell pursued this serendipitous observation and "... followed it [the launched 'Wave 

of Translation'] on horseback, and overtook it still rolling on at a rate of some eight or 

nine miles per hour, preserving its original form some thirty feet long and a foot to a 

foot and a half in height." He then conducted controlled laboratory experiments using 

a wave tank and quantified the phenomenon in an 1844 publication [109]. 

 He demonstrated four facts: 

1. The solitary waves that he observed had a hyperbolic secant shape. 

2. A sufficiently large initial mass of water can produce two or more independent 

near-solitary waves that separate in time. 

3. Solitary waves can cross each other "without change of any kind". 

4. In shallow water channel of height ‘h’ a solitary wave of amplitude ‘A’ travels 

at a speed of  g A h   where ‘g’ is the gravitational acceleration. That is, 

larger-amplitude waves move faster than smaller ones—a nonlinear effect. 

  

 

http://www.scholarpedia.org/article/Soliton#russell1844
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 In 1895, Dutch physicist Diederick Korteweg and his student Gustav de Vries 

(KdV) derived a nonlinear partial differential equation  

  

6 0t xxx x      (1) 

that now bears their name. Korteweg and de Vries argued that the KdV equation (1) 

could describe Russell's experiments. Equation (1) shows that the rate of change of the 

wave's height in time is governed by the sum of two terms: a nonlinear one (the 

amplitude effect) and a dispersive one (the effect that causes waves of different 

wavelengths to travel with different velocities). Korteweg and de Vries found a 

periodic solution in addition to a solitary-wave solution that resembled the wave that 

Russell had followed. These solutions arose as a result of a balance between 

nonlinearity and dispersion.  

  Their work and Russell's observations fell into obscurity and were ignored by 

mathematicians, physicists, and engineers studying water waves until 1965 when 

Norman Zabusky and Martin Kruskal published their numerical solutions of the KdV 

equation (and invented the term "soliton")  [131]. Kruskal derived (1) as an asymptotic 

(continuum) description of oscillations of unidirectional waves propagating on the 

"cubic" Fermi–Pasta–Ulam (FPU) nonlinear lattice [47,103,129]. Meanwhile, 

Morikazu Toda became the first to discover a soliton in a discrete, integrable system 

(the system is now referred to as the Toda lattice) [124]. 

  In 1965, Gary Deem, Zabusky, and Kruskal [8] produced films that showed 

interacting solitary waves in an FPU lattice, the KdV equation, and a modified KdV 

equation; see the discussion in the review article [132]. We depict the dynamics of 

solitons in the KdV equation in the space-time diagram of Figure 1. Robert Miura 

recognized the significance of this result and found an exact transformation between 

this modified KdV equation and equation (1)  [93]. This awakened the mathematical 

study of solitons, as Clifford Gardner, John Greene, Martin Kruskal, and Robert Miura 

in 1967 were able to solve the initial-value problem for the KdV equation by 

introducing the inverse scattering method [94 ,55, 52] providing an appropriate notion 

http://www.scholarpedia.org/article/Partial_differential_equation
http://www.scholarpedia.org/article/Soliton#Eq-1
http://www.scholarpedia.org/article/Soliton#Eq-1
http://www.scholarpedia.org/article/Soliton#Eq-1
http://www.scholarpedia.org/article/Soliton#fig:Fig1_soliton.gif
http://www.scholarpedia.org/article/Soliton#Eq-1
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of integrability for continuum frameworks. Vladimir Zakharov and Alexei Borisovich 

Shabat generalized the inverse scattering method in 1972 when they solved the 

nonlinear Schrödinger (NLS) equation, another model nonlinear PDE, demonstrating 

both its integrability and the existence of soliton solutions. In 1973, Mark Ablowitz, 

David Kaup, Alan Newell, and Harvey Segur demonstrated the existence of soliton 

solutions (and proved the integrability) of several other nonlinear PDEs, including the 

sine–Gordon equation (which was already known to be integrable based on Albert 

Backlünd's 19th century investigations of surfaces with constant negative Gaussian 

curvature). Other researchers have subsequently derived other integrable PDEs (in 

both one and multiple spatial dimensions) and constructed accompanying soliton 

solutions. As the Kadomtsev–Petviashvili (KP) equation illustrates (see Section 3), 

one needs to be more nuanced as to what constitutes a "soliton" in multiple spatial 

dimensions. When studying solitary waves in nonintegrable equations, analytical 

techniques typically rely on perturbative methods, asymptotic analysis, and/or 

variational approximations[77,113] An important example of a nonintegrable system 

with exact solutions for isolated solitary waves are the coupled mode equations for 

fiber Bragg gratings in optics. 

  Research on solitary waves and solitons remains one of the most vibrant areas 

of mathematics and physics [113]. It has had a broad and far-reaching impact in myriad 

fields ranging from the purest mathematics to experimental science. This has led to 

crucial results in integrable systems, nonlinear dynamics, optics, biophysics, 

supersymmetry, and more.  

First, we construct soliton solutions to (1). 

2.2 EXPLICIT CONSTRUCTION OF THE KdV SOLITON 

It is illustrative to demonstrate the construction of the soliton solution of the KdV 

equation (1) explicitly. We start with the ansatz 

( ),y y x Ut     (2) 

which describes a wave translating with speed U Inserting this into (1)  

6 0U        (3) 

http://www.scholarpedia.org/article/Soliton#The_solitary_wave_menagerie
http://www.scholarpedia.org/article/Soliton#Eq-1
http://www.scholarpedia.org/article/Soliton#Eq-1
http://www.scholarpedia.org/article/Soliton#Eq-1


 
13 

 

where '
d

dy
 . Integrating (3) and then multiplying the resulting equation by ψ′ and 

integrating again yields 

 
2

2 ' 3

1 2
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G G          (4) 

where 
1G  and 2G  are constants of integration. 

We want a solution in the form of a localized pulse, so we need ψ, ψ′, and all higher 

derivatives to vanish as y→±∞. This implies that 1G = 2G =0. [If one keeps nonzero 

constants, one can instead derive extended waves in the form of elliptic functions 

[130]  

This gives 

−  
2

2 ' 31
0

2 2

U
       (5) 

Solving (5) by separation of variables yields 

 2

0( , ) sech ( )
2

U
x t U x Ut x     (6) 

where x0 is a constant. We depict the solution (6) in Figure 4. 

 

 

Figure 1: The wave ϕ(x, t) in equation (6) with U=5, (0) 0x  , and t=0 . 

http://www.scholarpedia.org/article/Soliton#Eq-3
http://www.scholarpedia.org/article/Soliton#Eq-5
http://www.scholarpedia.org/article/Soliton#Eq-6
http://www.scholarpedia.org/article/Soliton#fig:Fig4_soliton.jpeg
http://www.scholarpedia.org/article/Soliton#Eq-6
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2.3 KDV SOLITON SOLUTION  

 

Figure 2: Collision between two soliton solutions of the KdV equation. 

 

Figure 3: Space-time diagram of the collision in Figure 1. 

Space is on the horizontal axis and time (increasing downward) is on the vertical axis. 

The heights of the waves are indicated by color, where bluer colors indicate smaller 

values and redder colors indicate larger values. Observe the phase shift that occurs 

when the two solitons collide. 

http://www.scholarpedia.org/article/Soliton#fig:Fig1_soliton.gif
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Figure 4: Near-recurrence in the Korteweg–de Vries (KdV) equation with a single-

mode (sine wave) initial condition. This figure depicts a space-time diagram with a 

periodic spatial domain on the horizontal axis and time (increasing downward) on the 

vertical axis. The red–orange streaks indicate right-propagating, large-amplitude 

solitons that arise from the initial condition. 

2.4 THE SOLITARY WAVE MENAGERIE 

  Since the discovery of solitary waves and solitons, a menagerie of localized 

pulses has been investigated in both one dimension and multiple spatial dimensions, 

though one must be nuanced when considering what constitutes a solitary wave (or 

even a localized solution) in multiple spatial dimensions. Many localized pulses have 

been given a moniker ending in "on" for conciseness, although they do not in general 

have similar interaction properties as solitons. The most prominent examples include 

the following: 

2.4.1 ENVELOPE SOLITONS [113] 

  Solitary-wave descriptions of the envelopes of waves, such as those that arise 

from the propagation of modulated plane waves in a dispersive nonlinear medium with 

an amplitude-dependent dispersion relation. One typically uses the descriptor bright to 

describe solitary waves whose peak intensity is larger than the background (reflecting 

applications in optics) and the descriptor dark to describe solitary waves with lower 

intensity than the background. 

http://www.scholarpedia.org/article/Soliton#scott


 
16 

 

2.4.2 SOLITARY WAVES WITH DISCONTINUOUS DERIVATIVES:  

  Examples of such solitary waves include compactons [107], which have finite 

(compact) support, and peakons, whose peaks have a discontinuous first derivative. 

There have also been studies of cuspons [113], which have a singularity in the first 

derivative rather than simply a discontinuity. 

2.4.3 GAP SOLITONS [113, 32] 

  Solitary waves that occur in finite gaps in the spectrum of continuous systems. 

For example, gap solitons have been studied rather thoroughly in NLS equations with 

spatially periodic potentials and have been observed experimentally in the context of 

both nonlinear optics and Bose–Einstein condensation. 

2.4.4 INTRINSIC LOCALIZED MODES (ILMS) [29 ,49]  

  ILMs, or discrete breathers, are extremely spatially-localized, time-periodic 

excitations in spatially extended, discrete, periodic (or quasiperiodic) systems. (At 

present, it is not clear whether analogous time-quasiperiodic solutions can be 

constructed for general lattice equations.) ILMs, which are localized in real space, 

arise in a large variety of nonlinear lattice models and are typically independent of the 

number of spatial dimensions of the lattice, the size of the lattice (which is, however, 

assumed to be large), and (for the most part) the precise choice of nonlinear forces 

acting on the lattice. The mechanism that permits the existence of ILMs has been 

understood theoretically for well over a decade, and such waves have now been 

observed in a large variety of physical systems. In common parlance, it is also 

typically assumed that intrinsic localized modes arise naturally from a system rather 

than due to impurities or defects. In this context, an ILM is a special type of discrete 

breather (which can be centered about an impurity and is otherwise as described 

above) rather than synonymous to a discrete breather, and many scholars also reserve 

the term "ILM" for modes that are stable or at least very long lived. 

2.4.5 Q-BREATHERS [49]  

  Exact time-periodic solutions of spatially extended nonlinear systems that are 

continued from the normal modes of a corresponding linear system. In contrast to 

http://www.scholarpedia.org/article/Soliton#scott
http://www.scholarpedia.org/article/Nonlinear_optics
http://www.scholarpedia.org/article/Quasiperiodic_Oscillations
http://www.scholarpedia.org/article/Stability
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ILMs, q-breathers are localized in normal-mode (Fourier) space, so that almost all of 

the energy is locked into a single Fourier mode for all time. (The label q refers to the 

wave number of the normal mode.) They also provide the best-known explanation for 

FPU recurrences. 

2.4.6 TOPOLOGICAL SOLITONS [113] 

  Solitons, such as some solutions to the sine–Gordon equation, that emerges 

because of topological constraints. One example is a skyrmion, which is the solitary-

wave solution of a nuclear model whose topological charge is the baryon number. 

Other examples include domain walls, which refer to interfaces that separate distinct 

regions of order and which form spontaneously when a discrete symmetry (such as 

time-reversal symmetry) is broken, screw dislocations in crystalline lattices, and 

the magnetic monopole. One-dimensional topological solitons are necessarily kinks, 

which we discuss below. 

2.4.7 KINKS [113]  

  The only one-dimensional topological solitary wave, it represents a twist in the 

value of a solution and causes a transition from one value to another. Kinks can 

sometimes be represented using heteroclinic orbits, whereas pulse-like solitary waves 

can sometimes be represented using homoclinic orbits. Kinks are sometimes used to 

represent domain walls. 

 

2.4.8 VORTEX SOLITONS[113] 

  A term often applied to phenomena such as vortex rings (a moving, rotating, 

toroidal object) and vortex lines (which are always tangent to the local vorticity). 

Coherent vortex-like structures also arise in dissipative systems. 

2.4.9 DISSIPATIVE SOLITONS [113]  

  Stable localized structures that arise in spatially extended dissipative systems. 

They are often studied in the context of nonlinear reaction–diffusion systems. 

http://www.scholarpedia.org/article/Soliton#scott
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2.4.10 OSCILLONS  

  A localized standing wave that arises in granular and other dissipative media 

that results from, e.g., the vertical vibration of a plate topped by a layer of free 

particles. 

2.4.11 HIGHER-DIMENSIONAL SOLITARY WAVES [113] 

  Solitary waves and other localized (and partially localized) structures have also 

been studied in higher-dimensional settings. One example of a genuine two-

dimensional soliton is the "lump" solution of the KP equation of the first type (i.e., the 

KP1 equation). This type of soliton decays algebraically rather than exponentially and 

is sometimes described as "weakly localized". The KP1 equation also has unstable line 

soliton solutions (a generalization of the soliton solutions of the KdV equation), which 

decay exponentially in all but a finite number of directions. The KP equation of the 

second type (i.e., the KP2 equation) differs from the KP1 equation in that it has the 

opposite sign in front of its diffusion term. The KP2 equation has stable line-soliton 

solutions, which (unlike line solitons in the KP1 equation) can merge with each other 

to form a single line soliton (which can, in turn, disintegrate into two separate line 

solitons). 

  Numerous generalizations of the above examples have also been investigated, 

as one can consider chains of solitons, discrete analogs of the above examples (such as 

discrete vortex solitons), semi-discrete examples (such as spatiotemporal solitary 

waves in arrays of optical fibers), one type of soliton "embedded" in another type, 

solitary waves in nonlocal media, quantum solitary waves, and more. 

2.5. APPLICATIONS 

  Solitary waves of all flavors arise ubiquitously in fluid mechanics, optics, 

atomic physics, biophysics, and more [113] 

 

 



 
19 

 

 

Figure 5 

Experimental discrete breather, produced via modulational instability, in a bi-

inductance electrical lattice.  

  It is impossible to discuss these manifestations exhaustively, so we show a few 

exciting figures and restrict ourselves to brief discussions of some of our favorite 

examples: 

2.5.1 NONLINEAR OPTICS [113,10] 

  Solitary waves are omnipresent in nonlinear optics. There have been extensive 

experimental and theoretical investigations about both spatial solitary waves, in which 

nonlinearity balances diffraction, and temporal solitary waves, in which nonlinearity 

balances dispersion. From a mathematical perspective, continuous nonlinear 

Schrödinger (NLS) equations are among the hallmark models in nonlinear optics, as 

they describe dispersive envelope waves (via solitary-wave solutions of the NLS) of 

the electric field in optical bers, and discrete NLS (DNLS) equations can be used to 

describe the dynamics of pulses in, e.g., optical waveguide arrays and photorefractive 

crystals. Classes of solitary waves known as second-harmonic generation (SHG) 

solitary waves, which are so-named because they occur in  (second-order nonlinearity) 

materials in optics, have been created experimentally in both spatial and temporal 

domains. Such materials have also been used to provide perhaps the only experimental 

generation of spatiotemporal solitary waves, in which there is a simultaneous balance 

of diffraction by self-focusing modulation and dispersion by phase modulation. 
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There have also been numerous studies of light bullets, which are three-dimensional 

localized pulses in self-focusing media with anomalous group dispersion. The 

properties of optical solitary waves can be manipulated experimentally through both 

"dispersion management" and "nonlinearity management" 

 

Figure 6 

Simulation of spin-wave localization in an antiferromagnet with a demagnetization 

field. The areas with higher energy are shaded in bluer colors. The sample-shape 

parameter  measures the ratio of demagnetization energy to exchange energy. Initially, 

one observes the formation of a single broad ILM in the entire 1024-spin lattice. 

Energy is then rapidly transferred to a smaller region from the rest of the lattice, so 

that the ensuing excitation breaks up into several virtually stationary and strongly 

localized defects.  

 

2.5.2 BOSE–EINSTEIN CONDENSATES (BECS) [32] 

  At very low temperatures, particles in a dilute Bose gas can occupy the same 

quantum (ground) state, forming a BEC, a coherent cloud of atoms which appears as a  
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sharp peak in both position and momentum space. As the gas is cooled, a large  

fraction of the atoms in the gas condense via a quantum phase transition, which occurs 

when the wavelengths of individual atoms overlap and behave identically. The 

macroscopic dynamics of BECs near zero temperature is modeled by an NLS equation 

known as the Gross–Pitaevskii (GP) equation. BEC solitary waves of numerous types 

have also been modeled using other models, such as DNLS equations. Because of the 

similarity of the model equations, many of the solitary-wave phenomena that were 

originally studied in the context of nonlinear optics arise here as well, and the extreme 

tunability of BECs has been a major boon for both theoretical and experimental 

studies. For example, bright solitary waves were created in Li atoms and gap solitons 

have been created in Rb. Additionally, there have been several theoretical studies on 

manipulating the properties of solitary waves in BECs via nonlinearity management 

(which can be achieved in principle by exploiting the properties of Feshbach 

resonances). Many novel types of solitary-wave structures have now been created in 

BEC laboratories, and research on nonlinear waves in BECs continues to develop at a 

rapid pace. One of the most important current experimental challenges for work on 

solitary waves in BECs (and also nonlinear optics) is the creation of stable two-

dimensional and three-dimensional solitary waves in the presence of cubic self-

focusing nonlinearity, as such structures must be stabilized in order to prevent them 

from collapsing (in accord with theoretical predictions). 

 

Figure 7 

http://www.scholarpedia.org/article/Linear_and_Nonlinear_Waves
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1995 recreation of Russell's soliton in the Union Canal. Figure courtesy of Chris 

Eilbeck and Heriot–Watt University. 

2.5.3 WATER WAVES [113]  

  Russell's "wave of translation" was a water-wave soliton, and (as discussed 

above) Korteweg and de Vries derived their nonlinear wave equation to describe the 

shallow water waves that Russell had observed. The KdV equation arises in the long-

wavelength limit, and shallow-water solitary waves have been the subject of numerous 

laboratory experiments. Solitary waves also arise in deep water, as shown by the 

pioneering work of Vladimir Zakharov who derived an envelope wave description 

whose limiting case satisfies an NLS equation. Additionally, solitary-wave solutions 

have been constructed in more sophisticated models in fluid dynamics, and there has 

been a lot of work on myriad types of solitary waves. For instance, various scientists 

have attempted to explain the large and seemingly spontaneous freak waves (or rogue 

waves) as solitary waves. Additionally, tidal bores have been explained in terms 

of dispersive shock waves, which consist (in spatial profile) of a leading pattern in the 

form of a solitary traveling wave and a trailing pattern in the form a wave train with 

slowly modulated amplitude that eventually asymptotes to a stationary state. Other 

interesting studies have focused on turbulent velocity fields that can arise from the 

breaking of solitary waves, 3D vortex structures under breaking waves, and the 

spilling and plunging of waves. 

 

 

http://www.scholarpedia.org/article/Dispersive_shock_waves
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Figure 8 

Three dark solitary waves in an Rb Bose–Einstein condensate (BEC). The intensity 

increases from dark to light, so these solitary waves are lower-density pulses in a 

higher-density background. The axial (horizontal) length of the BEC is about 250 

microns.  

2.5.4 BIOPHYSICS [130, 29]  

  There have been some attempts to use solitary-wave descriptions to describe 

various biophysical phenomena. One example is the Davydov soliton, which satisfies 

an equation that was designed to model energy transfer in hydrogen-bonded spines 

that stabilize protein α-helices The Davydov soliton represents a state composed of an 

excitation of amide-I and its associated hydrogen-bond distortion. It has been used to 

describe a local conformational change of the DNA α+helices and there now exists 

experimental evidence of such states. Another type of DNA solitary wave was 

introduced by Peyrard and Bishop, who interpreted solitary-wave solutions of a model 

for DNA denaturization as bubbles that appear in the DNA structure as temperature is 

increased. The Peyrard–Bishop model also admits ILM solutions, and ILMs have also 

been investigated both theoretically and experimentally in the context of biopolymers. 

Using a model similar to Davydov's, local modes in molecular crystals have also been 

described using solitary waves. More controversially, solitary waves have recently 
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been used in neuroscience as an alternative to the accepted Hodgkin–Huxley model to 

describe the traveling of signals along a cell's membrane. 

2.5.5 MICROELECTROMECHANICAL (MEM) AND 

NANOELECTROMECHANICAL (NEM) DEVICES [29] 

  Among the primary classes of systems in which ILMs have been studied are 

MEMs or NEMs consisting of arrays of nonlinear oscillators (such as cantilevers). 

 

Figure 9 

A vortex lattice in a rapidly rotating BEC. In this image, which is taken after the 

condensate expands when the trap is turned off; the diameter is about 900 microns. 

The trap has a diameter of about 125 microns, as the in-trap spacing between vortices 

is about 7 microns and there are about 18 rows of vortices across the BEC. Figure 

courtesy of Eric Cornell and Peter Engels. 

2.5.6 JOSEPHSON JUNCTIONS [113, 29]  

  A Josephson junction is a nonlinear oscillator consisting of two weakly 

coupled superconductors that are connected by a non-conducting barrier. Such 

junctions might prove to be important for producing quantum-mechanical circuits such 

as superconducting quantum interference devices (SQUIDs). Additionally, some of the 

most visually striking ILMs have been observed in arrays of Josephson junctions. The 

first experimental realization of an array of such junctions revealed excitations that 

arose from spatially localized voltage drops at particular junctions as a homogeneous 

DC bias current traversed an annular array. Solitary waves in "long Josephson 

http://www.scholarpedia.org/article/Soliton#ilm
http://www.scholarpedia.org/article/Soliton#ilm
http://www.scholarpedia.org/article/Soliton#ilm
http://www.scholarpedia.org/article/Periodic_Orbit
http://www.scholarpedia.org/article/Soliton#scott
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junctions", which are much longer than the intrinsic length scale known as the 

Josephson penetration depth (which is of the order 1–1000  m), are known 

asfluxons because they contain one quantum of magnetic flux. 

2.5.7 GRANULAR CRYSTALS   

  Granular crystals consist of a tightly-packed array of solid particles that deform 

when they contact each other. They are modeled by an FPU-like set of equations with 

an asymmetric potential (there is only a force when the particles are squeezing each 

other) that arises from the Hertzian description for contact between elastic particles. 

Granular crystals exhibit a highly nonlinear dynamic response, and the equations of 

motion give zero when they are linearized (although additional linear forces, such as 

gravity and precompression, can also be included with appropriate experimental 

setups). Taking a long-wavelength asymptotic limit of the equations of motion gives a 

partial differential equation whose only diffusion term is nonlinear. This equation 

admits traveling compacton solutions that match well with waves that have observed 

experimentally. (Such compactons give the best approximation that one can achieve 

with a continuum approximation, but a more accurate analysis reveals instead that the 

tails of the associated wave solutions of the original equations of motion exhibit a 

doubly-exponential decay.) Other types of solitary waves, including ILMs, have been 

observed in the presence of precompression. 

 

Figure 10 

 Transition from discrete diffraction [sub-panels (a, c)] to nonlinear self-trapping [sub-

panels (b,d)] of a probe beam in a ring-shaped photonic lattice. The arrow indicates the  
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center of the lattice and the cross indicates the input position of the probe beam.  

2.5.8 SURFACE WAVES [113]  

  Numerous interesting nonlinear wave phenomena can occur on the surface of a 

"continuum" (e.g., fluids, solids, and appropriate granular materials—which can often 

be modeled using continuum descriptions), and some of them admit solitary-wave 

descriptions. Although it can be applied more broadly, the termsurface wave is often 

used to refer to a relatively specific class of examples. These include the pattern-

forming standing waves called Faraday wavesthat form, e.g., on the surface of 

continua housed in vertically vibrated receptacles [similar phenomena have now also 

been seen in other settings, such as BECs , soliton-like oscillons that switch between 

peaks and craters and have been demonstrated in vertically-vibrated plates of granular 

materials, viscous fluids, and colloids; andacoustic surface waves, which travel along 

the surfaces of solid materials. 

 

Figure 11 

 (Left) Compacton-like solitary waves in a granular chain consisting of a sequence of 

steel–Teflon dimers. (Each dimer consists of a spherical steel particle followed by a 

spherical Teflon particle.) The vertical axis shows the force in Newtons (horizontal  
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lines are 2 N apart), and the horizontal axis shows the time in microseconds. The 13th 

and 33rd particles are made of steel, and the 24th particle is made of Teflon. (Right) 

Panel (a) shows the experimental configuration for chains composed of dimers 

consisting of N1 steel particles and N2 Teflon particles. Panel (b) shows the embedding 

of a Piezo-sensor to record the force in a particle. Both panels are from . 

2.5.9 PLASMAS [113]  

  One of the convenient testbeds to study the dynamics of solitary waves has 

been plasmas, which consist of a large number of charged particles. For example, the 

KdV equation has been used to describe the local ion density (reflecting the local 

departure of the charge from neutrality) in a perturbation of the charge density. Other 

equations that admit soliton and solitary-wave solutions, including the Kadomtsev–

Petviashvili (KP) equations and more complicated variants of both the KdV and KP 

equations, are also prominent in the study of plasmas. Dusty plasmas, which contain 

small suspended particles, have been modeled using nonlinear oscillator chains that 

admit several types of solitary-wave solutions (such as ILMs). 

 

Figure 12 

An oscillon in a vertically-vibrated layer of bronze beads. 
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2.5.10 FIELD THEORY  

  Solitons and their relatives, such as instantons, are also important in both 

classical and quantum field theory. Topological solitons such as monopoles, kinks, 

vortices, and skyrmions are key to the modern understanding of field theory. (Non-

topological solitons such as Q-balls have generally played a less central role than their 

topological counterparts.) In (1+1)-dimensional quantum field theory, topological 

soliton solutions of the sine–Gordon equation can be mapped to elementary excitations 

of the Thirring model (an exactly solvable quantum field theory). This provides a toy 

model for more physically relevant examples in which the role of solitons is played by 

magnetic monopoles that can be mapped to electrically charged elementary particles 

via an equivalence that is given the name strong–weak duality or, more commonly, S-

duality. S-duality is also an essential feature of string theory. Instantons give non-

perturbative corrections to path integrals, and they play a crucial role in quantum field 

theory (especially in tunneling phenomena). Because of their algebraic structure, 

topological instantons can sometimes be constructed explicitly using methods from 

subjects such as twistor theory. Topological solitons also arise in various parts of 

string theory and super gravity (such as in studies of D-branes and NS-branes), as well 

as in the study of defects such as domain walls and cosmic strings. 

 

Figure 13 

 A holographic image of a bulk strain soliton in a Poly (methyl methacrylate) [PMMA] 

bar.  
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2.6 NONLINEAR SYSTEM  

In mathematics, a nonlinear system [38] is one that does not satisfy the 

superposition principle, or one whose output is not directly proportional to its input; 

however, a linear system fulfills these conditions. In other words, a nonlinear system is 

any problem where the equation(s) to be solved cannot be written as a linear 

combination of the unknown variables or functions that appear in it (them). It does not 

matter if nonlinear known functions appear in the equations; in particular, a 

differential equation is linear if it is linear in the unknown function and its derivatives, 

even if nonlinear known functions appear as coefficients. 

 Nonlinear problems are of interest to engineers, physicists and mathematicians 

because most physical systems are inherently nonlinear in nature. Nonlinear equations 

are difficult to solve and give rise to interesting phenomena such as chaos.[128] Some 

aspects of the weather (although not the climate) are seen to be chaotic, where simple 

changes and in some cases even infinitesimal changes  in one part of the system 

produce complex effects throughout. A system is said to be linear if it satisfy the 

property of homogenity and additivity. 

2.7 EXAMLPES OF LINEAR SYSTEMS [65] 

1. Wave propagation such as sound and electromagnetic waves 

2. Electrical circuits composed of resistors, capacitors, and inductors 

3. Electronic circuits, such as amplifiers and filters 

4. Mechanical motion from the interaction of masses, springs, and dashpots   

(dampeners) 

5. Systems described by differential equations such as resistor-capacitor-inductor 

networks. 

6. The unity system where the output is always equal to the input 

7. The null system where the output is always equal to the zero, regardless of the     

input 
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8. Differentiation and integration, and the analogous operations of first difference and 

running sumfor discrete signals 

9. Small perturbations in an otherwise nonlinear system, for instance, a small signal   

beingamplified by a properly biased transistor 

10. Convolution, a mathematical operation where each value in the output is  

expressed as thesum of values in the input multiplied by a set of weighing    

coefficients. 

11.Recursion, a technique similar to convolution, except previously calculated  

values in the output are used in addition to values from the input 

 

 2.8 EXAMLPES OF NONLINEAR SYSTEMS [38,65] 

1. Systems that do not have sinusoidal fidelity, such as electronics circuits for: peak 

detection, squaring, sine wave to square wave conversion, frequency doubling, etc. 

2.Common electronic distortion, such as clipping, crossover distortion and slewing. 

3. Multiplication of one signal by another signal, such as in amplitude modulation 

and automatic gain controls. 

4. Hysteresis phenomena, such as magnetic flux density versus magnetic intensity in 

iron, or mechanical stress versus strain in vulcanized rubber. 

5.Saturation, such as electronic amplifiers and transformers driven too hard 

6.Systems with a threshold, for example, digital logic gates, or seismic vibrations 

that are strong enough to pulverize the intervening rock. 

Formally, linear systems are defined by the properties of homogeneity, additivity, and 

shift invariance. Informally, most scientists and engineers think of linear systems in 

terms of static linearity and sinusoidal fidelity. 

2.9 NONLINEAR DIFFERENTIAL EQUATIONS 

A system of differential equations is said to be nonlinear if it is not a linear 

system Problems involving nonlinear differential equations are extremely diverse, and 

methods of solution or analysis are problem dependent. Examples of nonlinear 

differential equations are the Navier–Stokes equations in fluid dynamics, KdV 
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equation, Sine-Gordon Equation, Nonlinear Schrodinger Equation, Volterra equations 

in biology etc. 

  One of the greatest difficulties of nonlinear problems is that it is not generally 

possible to combine known solutions into new solutions. In linear problems, for 

example, a family of linearly independent solutions can be used to construct general 

solutions through the superposition principle. A good example of this is one-

dimensional heat transport with Dirichlet boundary conditions, the solution of which 

can be written as a time-dependent linear combination of sinusoids of differing 

frequencies; this makes solutions very flexible. It is often possible to find several very 

specific solutions to nonlinear equations, however the lack of a superposition principle 

prevents the construction of new solutions. They are difficult to study: there are almost 

no general techniques that work for all such equations, and usually each individual 

equation has to be studied as a separate problem. 

2.10 INTEGRABLE SYSTEMS  

PDEs that arise from integrable systems are often the easiest to study, and can 

sometimes be completely solved. A well-known example is the Korteweg–de Vries 

equation. 

2.11 LIST OF SOME WELL-KNOWN CLASSICAL INTEGRABLE SYSTEMS  

 Classical mechanical systems (finite-dimensional phase space) 

 Harmonicoscillators in n dimensions 

 Centralforce motion 

 Two center Newtonian gravitational motion 

 Geodesic motion on ellipsoids 

 Neumann oscillator 

 Lagrange, Euler and Kovalevskaya tops 

 Integrable Clebsch and Steklov systems in fluids 

 Calogero–Moser–Sutherland models 

http://en.wikipedia.org/w/index.php?title=Geodesic_motion_on_ellipsoids&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Neumann_oscillator&action=edit&redlink=1
http://en.wikipedia.org/wiki/Lagrange,_Euler_and_Kovalevskaya_tops
http://en.wikipedia.org/w/index.php?title=Integrable_Clebsch_and_Steklov_systems_in_fluids&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Calogero%E2%80%93Moser%E2%80%93Sutherland_models&action=edit&redlink=1


 
32 

 

 Swinging Atwood's Machine with certain choices of parameters 

2. Integrable lattice models 

 Toda lattice 

 Ablowitz–Ladik lattice 

 Volterra lattice 

3. Integrable systems of PDEs in 1 + 1 dimension 

 Korteweg–de Vries equation 

 Sine–Gordon equation 

 Nonlinear Schrödinger equation 

 Boussinesq equation (water waves) 

 Nonlinear sigma models 

 Classical Heisenberg ferromagnet model (spin chain) 

 Classical Gaudin spin system (Garnier system) 

 Landau–Lifshitz equation (continuous spin field) 

 Benjamin–Ono equation 

 Dym equation 

 Three wave equation 

4. Integrable PDEs in 2 + 1 dimensions 

 Kadomtsev–Petviashvili equation 

 Davey–Stewartson equation 

 Ishimori equation 

5. Other integrable systems of PDEs in higher dimensions 

 Self-dual Yang–Mills equations 

 

 

http://en.wikipedia.org/wiki/Swinging_Atwood%27s_Machine
http://en.wikipedia.org/wiki/Toda_lattice
http://en.wikipedia.org/w/index.php?title=Ablowitz%E2%80%93Ladik_lattice&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Volterra_lattice&action=edit&redlink=1
http://en.wikipedia.org/wiki/Korteweg%E2%80%93de_Vries_equation
http://en.wikipedia.org/wiki/Sine%E2%80%93Gordon_equation
http://en.wikipedia.org/wiki/Nonlinear_Schr%C3%B6dinger_equation
http://en.wikipedia.org/wiki/Boussinesq_equation_(water_waves)
http://en.wikipedia.org/wiki/Nonlinear_sigma_models
http://en.wikipedia.org/wiki/Classical_Heisenberg_ferromagnet_model_(spin_chain)
http://en.wikipedia.org/w/index.php?title=Classical_Gaudin_spin_system_(Garnier_system)&action=edit&redlink=1
http://en.wikipedia.org/wiki/Landau%E2%80%93Lifshitz_equation_(continuous_spin_field)
http://en.wikipedia.org/wiki/Benjamin%E2%80%93Ono_equation
http://en.wikipedia.org/wiki/Dym_equation
http://en.wikipedia.org/w/index.php?title=Three_wave_equation&action=edit&redlink=1
http://en.wikipedia.org/wiki/Kadomtsev%E2%80%93Petviashvili_equation
http://en.wikipedia.org/wiki/Davey%E2%80%93Stewartson_equation
http://en.wikipedia.org/wiki/Ishimori_equation
http://en.wikipedia.org/wiki/Self-dual_Yang%E2%80%93Mills_equations
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2.12 INVERSE SCATTERING TRANSFORM 

In mathematics, [4] the inverse scattering transform is a method for solving 

some non-linear partial differential equations. It is one of the most important 

developments in mathematical physics in the past 40 years. The method is a non-linear 

analogue, and in some sense generalization, of the Fourier transform, which itself is 

applied to solve many linear partial differential equations. 

The inverse scattering transform may be applied to many of the so-called 

exactly solvable models, that is to say completely integrable infinite dimensional 

systems. These include the Korteweg–de Vries equation, the nonlinear Schrödinger 

equation, the coupled nonlinear Schrödinger equations, the Sine-Gordon equation, the 

Kadomtsev–Petviashvili equation, the Toda lattice equation, the Ishimori equation, the 

Dym equation etc. A further, particularly interesting, family of examples is provided 

by the Bogomolny equations (for a given gauge group and oriented Riemannian 3-

fold), the 2L solutions of which are magnetic monopoles. 

A characteristic of solutions obtained by the inverse scattering method is the existence 

of solitons, solutions resembling both particles and waves, which have no analogue for 

linear partial differential equations. The term "soliton" arises from non-linear optics. 

The inverse scattering problem can be written as a Riemann–Hilbert factorization 

problem. This formulation can be generalized to differential operators of order greater 

than 2 and also to periodic potentials. 

2.13 ZAKHAROV–SHABAT SYSTEM 

The nonlinear Schrödinger equation is integrable: Zakharov and Shabat (1972) 

solved it with the inverse scattering transform. The corresponding linear system of 

equations is known as the Zakharov–Shabat system: 

In 1972, Zakharov and Shabat [71] studied the Nonlinear Schrodinger equation, 

hereafter abbreviated the NLS equation:  
2

2 0t xxiu u u u    

This equation describes the stationary two-dimensional self-focusing and the 

associated transverse instability of a plane monochromatic wave. Unlike the linear 

Schrodinger equation, it contains a Soliton solution, thereby embodying the concept of 

a wave packet. It represents a balance between linear dispersion, which tends to break 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Partial_differential_equations
http://en.wikipedia.org/wiki/Fourier_transform
http://en.wikipedia.org/wiki/Exactly_solvable_model
http://en.wikipedia.org/wiki/Korteweg%E2%80%93de_Vries_equation
http://en.wikipedia.org/wiki/Nonlinear_Schr%C3%B6dinger_equation
http://en.wikipedia.org/wiki/Nonlinear_Schr%C3%B6dinger_equation
http://en.wikipedia.org/wiki/Nonlinear_Schr%C3%B6dinger_equation
http://en.wikipedia.org/wiki/Sine-Gordon_equation
http://en.wikipedia.org/wiki/Kadomtsev%E2%80%93Petviashvili_equation
http://en.wikipedia.org/wiki/Toda_lattice
http://en.wikipedia.org/wiki/Ishimori_equation
http://en.wikipedia.org/wiki/Dym_equation
http://en.wikipedia.org/wiki/Bogomol%27nyi%E2%80%93Prasad%E2%80%93Sommerfield_bound
http://en.wikipedia.org/wiki/Magnetic_monopoles
http://en.wikipedia.org/wiki/Solitons
http://en.wikipedia.org/wiki/Riemann%E2%80%93Hilbert_factorization
http://en.wikipedia.org/w/index.php?title=Zakharov%E2%80%93Shabat_system&action=edit&redlink=1
http://en.wikipedia.org/wiki/Nonlinear_Schr%C3%B6dinger_equation#CITEREFZakharovShabat1972
http://en.wikipedia.org/wiki/Inverse_scattering_transform
http://en.wikipedia.org/w/index.php?title=Zakharov%E2%80%93Shabat_system&action=edit&redlink=1


 
34 

 

up the wave packet, and a focusing effect of the cubic nonlinearity, produced by self-

interaction of the wave with itself. Zakharov and Shabat found a Lax pair for this 

equation and showed that one can solve it using the inverse scattering technique. This 

was indeed an important discovery, not only because it was a second nonlinear 

evolution equation solvable by this technique, but also because the associated linear 

eigenvalue problem that one has to consider was not the linear Schrodinger equation in 

this case. 

2.14 AKNS  

 
In 1973, Ablowitz, Kaup, Newell, and Segur [7,3] applied the Zakharov-Shabat 

inverse scattering formalism to the Sine-Gordon equation sin( )xtu u
 
This equation 

describes the propagation of ultra-short optical pulses in resonantmedia, and also 

arises in statistical mechanics and condensed matter physics. In fact it had also been 

studied long ago in connection with the theory of surfaces of Constant negative 

curvature.
 


