### CHAPTER-IV

Studies on Bivoltine × Bivoltine mulberry silkworm hybrids during Spring seasons (commercial seasons)



#### CHAPTER-IV

#### Studies on Bivoltine × Bivoltine mulberry silkworm hybrids during Pooled Spring seasons (commercial seasons)

Silk production involves mulberry cultivation and silkworm rearing which are essentially akin to agriculture, particularly mulberry cultivation is land and water based and influenced by soil, climate and other edaphic factors; whereas silkworm rearing is almost exclusively dependent on the mulberry leaf production and its quality and silkworm rearing also profoundly influenced by the climate and hence there is a demand for region and season specific silkworm races( Thangvalu,1999).In India, the silkworm hybrids which have been exploited for commercial silk production are either multivoltine x multivoltine, multivoltine x bivoltine or bivoltine x bivoltine combination. Identification of different season specific silkworm hybrids for Kashmir condition were carried out and three specific hybrids were identified (Quadir *et al.*,1997). Several promising multi x bi and bi x bi silkworm hybrids were identified by Subba Rao *et al.*,(1989); Das *et al.*,(1994) ; Rao *et al.*,(1989) for west Bengal condition.

Considering the climatic condition of NE Region (temperature ranges from 5°C to 38°C and relative humidity ranges from 38% to 98% with an annual precipitation ranging from 1000 mm to 11500 mm.) it has become need of the time to identify bivoltine commercial hybrid with high qualitative and quantitative characters for rearing under rainfed condition. In the present study a comparative performance of new bivoltine breeds i.e. SLD4 x SLD8 (plate 4, page 19), Dun17 x Dun 18 (plate 1, page 19), CSR2 x CSR4 (plate 6, page 19), APS105 x APS126 (plate 2, page 19), APS45 xAPS12 (plate 5, page 20) and CSR46 x CSR47 (plate 3, page 19) were studied for its quantitative and qualitative characters were studied for spring commercial seasons.

### **3.1** Results of Bi x Bi hybrids in pooled Spring seasons (commercial seasons) (From Table 1 to Table 16 and Fig. 1 to Fig. 15) :

The performances of Bi x Bi hybrids i.e. SLD4 x SLD8, Dun17 x Dun 18, CSR2 x CSR4, APS105 x APS 126, APS45 x APS126 and CSR46 x CSR47 **during spring season** at different temperature levels i.e.,  $24\pm3$ °C and  $25\pm5$ °C with constant humidity of  $79\pm2$  % is given below (Table 1):

**Fecundity:** The analysed data revealed that fecundity of Bi x Bi hybrids reared at  $25\pm5$  °C and  $79\pm2$  % ranged from 432.5 (Dun17 x Dun 18) to 497.85 (CSR46 x CSR47). Among the six hybrids highest evaluation index value was observed in the hybrid CSR46 x CSR47 (EIV 60.90428) followed by CSR2 x CSR4 (EIV 60.00) and SLD4 x SLD8 (EIV 55.58888)

**Hatchability :** The analysed data revealed that fecundity of Bi x Bi hybrids reared at 25±5°C and 79±2% ranged from 51.4% (Dun17 x Dun 18) to 94.91 % (CSR2 x CSR4). Hatching percentage was observed highest in CSR2 x CSR4 (EIV 58.71585) followed by CSR46 x CSR47 (EIV 58.04918)

Effective rate of rearing (Effective rate of rearing by number): The economic output of mulberry silkworm rearing as reflected by effective rate of rearing in number (ERR) ranged from 3068 (APS45 x APS126) to 5391 (APS105 x APS 126) reared at  $25\pm5$ °C and  $79\pm2$  %. Among the six hybrids highest evaluation index value was observed in the hybrid APS105 x APS 126(E IV 60. 50109) followed by SLD4 x SLD8 (EIV 56.60311) and CSR2 x CSR4 (EIV 56. 52489)

**Cocoon yield/10,000 larvae by weight**: The cocoon yield by weight ranged from 4.00 kg (APS45 x APS126) to 8.62 kg (SLD4 x SLD8) at  $25\pm5$ °C and  $79\pm2$ %. Significant difference in cocoon yield among the six Bi x Bi hybrids was noticed in SLD4 x SLD8 (EIV 62.03947) followed by CSR2 x CSR4 (EIV 58.45395) and CSR46 x CSR47 (EIV 49.93421).

23

Single cocoon weight: cocoon weight among hybrids reared at  $25\pm5$ °C and 79±2% ranged from 1.52 (Dun17 x Dun 18) to 1.729g (SLD4 x SLD8). Significant difference in single cocoon weight among the six Bi x Bi hybrids was noticed in SLD4 x SLD8 (EIV 67.28571) followed by (Dun17 x Dun 18) (EIV 62.57).

Shell weight: The shell weight ranged from 0.2995 (APS105 x APS 126) to 0.3985 g (SLD4 x SLD8) at  $25\pm5$  °C and  $79\pm2$  %. at  $25\pm5$  °C and  $79\pm2$  °C. Significant difference in shell weight for all the hybrids was recorded in SLD4 x SLD8 (EIV 65.78791) followed by (CSR46 x CSR47) (EIV 51.07239) and APS45 x APS126 (EIV 51.37027).

Shell percentage: The analyzed data revealed that shell ratio among the six Bi x Bi hybrids reared at  $25\pm5$  °C and  $79\pm2$  % ranged from 19.595% (APS105 x APS 126) to 22.97 % (SLD4 x SLD8). Significant difference was observed among the six Bi x Bi hybrids in APS45 x APS126 (EIV 70.581605) followed by SLD4 x SLD8 (EIV 59.8512173).

**Yield:** Cocoon yield was calculated per 10,000 larvae brushed and expressed in terms of yield/100 dfls (kg). The cocoon yield among the six Bi x Bi hybrids reared at  $25\pm5$  °C and  $79\pm2$ % ranged from 16 (APS45 x APS12) to 34.48 kg. (SLD4 x SLD8). Significant difference was observed among the six Bi x Bi hybrids in SLD4 x SLD8 (EIV 65.91)

**Filament length**: The trait filament length ranged from 660 (APS45 x APS126) to 816 m (CSR46 x CSR47) at  $25\pm5$  °C and  $79\pm2$ %. Significant difference was observed among the six Bi x Bi hybrids in CSR46 x CSR47 (EIV 60.2653) followed by SLD4 x SLD8 (EIV 57.45165) and CSR2 x CSR4 (EIV 53.59422).

**Filament weight**: The trait filament weight ranged from 20.255 (APS45 x APS12) to 26.925 cg (CSR2 x CSR4) at  $25\pm5$ °C and  $79\pm2$ %. Significant difference

was observed among the six Bi x Bi hybrids in CSR2 x CSR4 (EIV 61.30515) followed by CSR46 x CSR47 (EIV 60.97426) and Dun17 x Dun 18 (EIV 54.05331).

**Filament size**: The trait filament size ranged from 2.53 (APS45 x APS12) to 3.11d (CSR2 x CSR4) at  $25\pm5$ °C and  $79\pm2$ %. Significant difference was observed among the six Bi x Bi hybrids in by CSR46 x CSR47 (EIV 68 .18721) followed by CSR2 x CSR4 (EIV 64.61187).

**Reelability:** The reelability of the hybrids reared at  $25\pm5$  °C and  $79\pm2\%$  ranged from 82.855 (APS45 x APS12) to 85.11% (Dun17 x Dun 18). Significant difference was observed among the six Bi x Bi hybrids in Dun17 x Dun 18 (EIV 66.79487) followed by SLD4 x SLD8 (EIV 58.782057).

**Raw silk percentage**: The raw silk percentage of the hybrids reared at  $25\pm5$  °C and  $79\pm2\%$  ranged from 29.715 (APS45 x APS12) to 35.88% (CSR46 x CSR47). Significant difference was observed among the six Bi x Bi hybrids in CSR2 x CSR4 (EIV 61.10879) followed by CSR46 x CSR47 (EIV 61.04603).

**Neatness:** Neatness did not show much variation in the breeds. It ranged from 91.5(SLD4 x SLD8, Dun17 x Dun 18) to 92.5 (CSR2 x CSR4, APS105 x APS 126, APS45 x APS126 and CSR46 x CSR47) at 25±5°C and 79±2%, respectively.

**Boil-off loss**: It ranged from 26.65 (CSR46 x CSR47) to 29.26 (CSR2 x CSR4).

Significant difference was observed among the six Bi x Bi hybrids in CSR2 x CSR4 (EIV 62. 07) followed by Dun17 x Dun 18 (EIV 53. 67).

Thus study conducted on the growth and economic traits of cocoon revealed that three mulberry silkworm breeds viz. CSR46 x CSR47 (EIV60.7208), CSR2 x CSR4 (EIV57.0620) and SLD4 x SLD8 (EIV 55.9030) are the most promising for commercial exploitation in agro climatic condition of North eastern region of India.



Plate:1



Plate : 2



Plate : 3





Plate : 4 SLD4 xSLD8 hybrid cocoons



Plate : 5 APS45 x APS12 hybrid cocoons



Plate: 6 CSR2 x CSR4 hybrid cocoons

#### Plate 4, 5 & 6 : Photograph of BI × BI Hybrids

#### Table 1: Evaluation index of six Bi x Bi Hybrids of Bombyx- mori L in (Spring Season) (pooled data)

|                |            | EI value  | EI value  | EI value              | EI value       | EI value   | EI value   | EI value   | EI value   | EI value   | EI value  |
|----------------|------------|-----------|-----------|-----------------------|----------------|------------|------------|------------|------------|------------|-----------|
|                | BREED      | for       | for       | for                   | for            | for        | for        | for        | for        | for        | for       |
|                |            | Fecundity | Hat%      | ERR(No)               | ERR(WT.)       | S.C.wt.(g) | S.s.wt.(g) | SR%        | Yield/100  | Filament   | Filament  |
|                |            |           |           |                       |                |            |            |            | dfls.      | Length (M) | Wt.       |
|                |            | (a)       | (b)       | C                     | (d)            | (e)        | (f)        | (g)        | (h)        | (I)        | (j)       |
|                | SLD4       | ie - C    |           | 2                     |                |            | a.<br>1    |            |            |            |           |
| 1              | x          | EI        | EI        | EI                    | EI             | EI         | EI         | EI         | EI         | EI         | EI        |
|                | SLD8       | 55.58888  | 57.36612  | 56.60311              | 62.039         | 67.28571   | 65.78791   | 59.8512173 | 65.9148864 | 57.451646  | 50.01838  |
| -              |            |           |           |                       |                |            |            |            |            |            |           |
|                |            |           |           |                       |                |            |            |            |            |            |           |
|                | Dun17      |           |           |                       | 1. x 1         |            | A 4 5      |            |            |            |           |
| 2              | х          | 32.07764  | 36.02732  | 49.61542              | 48.882         | 62.57143   | 50.56598   | 52.6375113 | 56.1233179 | 52.686586  | 54.05331  |
|                | Dun18      |           |           |                       |                |            |            |            |            |            |           |
| 1              |            |           |           |                       |                |            |            |            |            |            |           |
|                | CSR2       |           |           |                       |                |            |            |            |            |            | 1.1       |
| 3              | x          | 60        | 58.71585  | 56.52489              | 58.454         | 54.71429   | 50.29789   | 56.3345356 | 62.9325665 | 53.594217  | 61.30515. |
|                | CSR4       |           | ÷.        |                       |                | 1 a g      |            |            |            |            |           |
|                |            |           |           |                       |                |            |            |            |            | -<br>      | 1         |
|                | APS105     |           |           |                       |                |            |            |            | i se e     |            |           |
| 4              | x          | 44.71548  | 36.28415  | 60.50109 <sup>°</sup> | 49.046         | 59.21429   | 51.37027   | 70.581605  | 58.574185  | 29.905062  | 37.13235  |
|                | APS126     |           |           |                       |                |            |            |            |            |            |           |
|                | bet less   |           |           |                       |                |            |            |            |            |            |           |
| and the second |            |           |           |                       |                |            |            |            |            |            |           |
| 5              | APS45      | 40.04471  | 54 ((12)  | 20.21/72              | 21.645         | 55 40057   | 50.2(01    | 55 5000005 | 55.04(04(2 | 1010000    | 26 001 /= |
| 5              | X<br>ADS10 | 48.964/1  | 54.6612   | 30.21675              | 31.645         | 55.42857   | 50.2681    | 55.5229937 | 55.9460462 | 46.106265  | 36.80147  |
|                | APS12      |           |           |                       |                |            |            |            |            | A - 6      |           |
| 1.1            | CSR46      |           |           |                       | and the target |            |            | 1          |            |            |           |
| 6              | х          | 1         | · · · · · |                       |                |            |            |            |            |            |           |
| 1              | CSR47      | 60.90428  | 58.04918  | 46.53875              | 49.934         | 55.14286   | 51.07239   | 51.5103697 | 56.8632023 | 60.2653    | 60.97426  |

Contd.

|                                    |                                       |                                    | 1 X                                |                                    |                              |          |       |
|------------------------------------|---------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------|----------|-------|
| <b>EI value</b><br>for<br>Filament | <b>EI value</b><br>for<br>Reelability | <b>EI value</b><br>for<br>Raw silk | <b>EI value</b><br>for<br>Neatness | <b>EI value</b><br>for<br>Boil-off | <b>CUMULA-</b><br>TIVE<br>EI | Av.      | Rank  |
| Size (D)                           | (%)                                   |                                    | (%)                                |                                    |                              |          |       |
| (k)                                | (L)                                   | (m)                                | (n)                                | (0)                                |                              |          |       |
| EI<br>47.48858                     | EI<br>58.78205                        | EI<br>43.20084                     | EI<br>49.22495                     | EI<br>48.94147                     | 838.5452                     | 55.90302 | (III) |
| 39.26941                           | 66.79487                              | 42.80335                           | 50                                 | 53.67372                           | 747.7814                     | 49.8521  |       |
| 64.61187                           | 45.25641                              | 61.10879                           | 50                                 | 62.0797                            | 855.9301                     | 57.06201 | (II)  |
| 49.77169                           | 49.74359                              | 56.48536                           | 50                                 | 48.81694                           | 752.1421                     | 50.14281 |       |
| 38.12785                           | 37.88462                              | 35.25105                           | 50                                 | 45.26775                           | 672.0921                     | 44.80614 |       |
| 61.18721                           | 41.53846                              | 61.04603                           | 50                                 | 29.57659                           | 910.8131                     | 60.72088 | (I)   |

#### **Table 2 :** Mean Fecundity of different BI × BI Hybrids during spring season

| SLD4×SLD8 | DUN17×DUN18 | CSR2×CS4 | APS105×APS126 | APS45×APS126 | CSR46×CSR47 |
|-----------|-------------|----------|---------------|--------------|-------------|
| 485.8     | 432.5       | 490.75   | 461.15        | 470.753      | 497.85      |



Fig 1: Mean Fecundity of BI × BI Hybrids during spring season



**Table 3 :**Mean hatching % of different BI × BI Hybrids during spring season

| SLD4×SLD8 | DUN17×DUN18 | CSR2×CS4 | APS105×APS126 | APS45×APS126 | CSR46×CSR47 |
|-----------|-------------|----------|---------------|--------------|-------------|
| 92.45     | 51.4        | 94.91    | 53.87         | 87.49        | 93.7        |



Fig 2 : Mean hatching % of BI × BI Hybrids during spring season

**Table 4 :**Mean Effective rate of rearing (by number) of different BI × BIHybrids during spring season

| SLD4×SLD8 | DUN17×DUN18 | CSR2×CS4 | APS105×APS126 | APS45×APS126 | CSR46×CSR47 |
|-----------|-------------|----------|---------------|--------------|-------------|
| 5092      | 4556        | 5086     | 5391          | 3068         | 4320        |



Fig 3 : Mean Effective rate of rearing (by number) of  $BI \times BI$  Hybrids during spring season

**Table 5 :**Mean Effective rate of rearing (by weight) of different BI × BI Hybrids<br/>during spring season

| DUN17XDUN18 | CSR2xCS4 | APS105XAPS126 | APS45XAPS126 | CSR46XCSR47 |
|-------------|----------|---------------|--------------|-------------|
| 6.61        | 8.075    | 6.645         | 4            | 6.77        |





season

 Table 6 :
 Mean single cocoon weight of different BI × BI Hybrids during spring season

| SLD4×SLD8 | DUN17×DUN18 | CSR2×CS4 | APS105×APS126 | APS45×APS126 | CSR46×CSR47 |
|-----------|-------------|----------|---------------|--------------|-------------|
| 1.729     | 1.52        | 1.641    | 1.5435        | 1.57         | 1.644       |



Fig 5 : Mean single cocoon weight of BI × BI Hybrids during spring season

 Table 7 :
 Mean single shell weight of different BI × BI Hybrids during spring season

| SLD4×SLD8 | DUN17×DUN18 | CSR2×CS4 | APS105×APS126 | APS45×APS126 | CSR46×CSR47 |
|-----------|-------------|----------|---------------|--------------|-------------|
| 0.3985    | 0.3265      | 0.3255   | 0.2995        | 0.3545       | 0.3585      |



Fig: 6 Mean single shell weight of  $BI \times BI$  Hybrids during spring season

35

1

**Table 8 :**Mean shell ratio of different BI × BI Hybrids during spring season

| SLD4×SLD8 | DUN17×DUN18 | CSR2×CS4 | APS105×APS126 | APS45×APS126 | CSR46×CSR47 |
|-----------|-------------|----------|---------------|--------------|-------------|
| 22.97     | 21.585      | 22.58    | 19.595        | 22.49        | 22.045      |



**Fig 7 :** Mean shell ratio of BI × BI Hybrids during spring season

| Table 9 : | Mean | Yield/100 | dfls | of Different | BI× | BI Hybrids | during   | spring | season |
|-----------|------|-----------|------|--------------|-----|------------|----------|--------|--------|
|           |      |           |      |              |     | ~          | <u> </u> |        |        |

| SLD4×SLD8 | DUN17×DUN18 | CSR2×CS4 | APS105×APS126 | APS45×APS126 | CSR46×CSR47 |
|-----------|-------------|----------|---------------|--------------|-------------|
| 34.48     | 26.44       | 32.3     | 26.56         | 16           | 27.08       |



Fig 8 : Mean Yield/100 dfls of  $BI \times BI$  Hybrids during spring season

37

Table 10 :Mean filament length (meters) of different BI × BI Hybrids during<br/>spring season

| SLD4×SLD8 | DUN17×DUN18 | CSR2×CS4 | APS105×APS126 | APS45×APS126 | CSR46×CSR47 |
|-----------|-------------|----------|---------------|--------------|-------------|
| 785       | 732.5       | 742.5    | 481           | 660          | 816         |



Fig 9 : Mean filament length (meters) of BI × BI Hybrids during spring season

**Table 11 :**Mean Filament weight of different BI × BI Hybrids during spring<br/>season (Breed)

| SLD4×SLD8 | DUN17×DUN18 | CSR2×CS4 | APS105×APS126 | APS45×APS126 | CSR46×CSR47 |  |
|-----------|-------------|----------|---------------|--------------|-------------|--|
| 23.855    | 24.9        | 26.925   | 20.35         | 20.255       | 26.835      |  |



Fig 10 : Mean filament weight of BI × BI Hybrids during spring season (Breed)

**Table 12 :**Mean filament size (Denier) of different BI × BI Hybrids during spring<br/>season (Breed)

| SLD4×SLD8 | DUN17×DUN18 | CSR2×CS4 | APS105×APS126 | APS45×APS126 | CSR46×CSR47 |
|-----------|-------------|----------|---------------|--------------|-------------|
| 2.735     | 2.555       | 3.11     | 2.785         | 2.53         | 3.035       |



**Fig 11 :** Mean filament size (Denier) of BI × BI Hybrids during spring season (Breed)

**Table 13 :** Mean relability of different BI × BI Hybrids during spring season (Breed)

di la

1

- 7

| SLD4×SLD8 | DUN17×DUN18 | CSR2×CS4 | APS105×APS126 | APS45×APS126 | CSR46×CSR47 |
|-----------|-------------|----------|---------------|--------------|-------------|
| 84.485    | 85.11       | 83.43    | 84.82         | 82.855       | 83.14       |



Fig 12 : Mean relability of BI × BI Hybrids during spring season (Breed)

41

Table 14 :Mean raw silk % of different BI × BI Hybrids during spring season<br/>(Breed)

| SLD4×SLD8 | DUN17×DUN18 | CSR2×CS4 | APS105×APS126 | APS45×APS126 | CSR46×CSR47 |
|-----------|-------------|----------|---------------|--------------|-------------|
| 31.615    | 31.52       | 35.895   | 34.79         | 29.715       | 35.88       |



**Fig 13 :** Mean raw silk % of BI × BI Hybrids during spring season (Breed)

Table 15 :Mean neatness of different BI × BI Hybrids during spring season<br/>(Breed)

| SLD4×SLD8 | DUN17×DUN18 | CSR2×CS4 | APS105×APS126 | APS45×APS126 | CSR46×CSR47 |
|-----------|-------------|----------|---------------|--------------|-------------|
| 31.615    | 31.52       | 35.895   | 34.79         | 29.715       | 35.88       |



Fig 14 : Mean neatness of BI × BI Hybrids during spring season (Breed)

**Table 16 :** Mean boil-off % different BI × BI hybrids during spring season (Breed)

| SLD4×SLD8 | DUN17×DUN18 | CSR2×CS4 | APS105×APS126 | APS45×APS126 | CSR46×CSR47 |
|-----------|-------------|----------|---------------|--------------|-------------|
| 28.205    | 28.585      | 29.26    | 28.385        | 28.67        | 26.65       |





**3.2** Statistical analysis of Bi × Bi hybrids on pooled spring seasons (commercial seasons)

**One way Anova of Bivoltine × Bivoltine hybrids (pooled spring season):** 

 Table 3.2.1: One way Anova on fecundity and rearing parameters of different

 bivoltine hybrids (pooled spring season).

| fecundity     | Sum of Squares | df | Mean Square   | F      | Sig. |
|---------------|----------------|----|---------------|--------|------|
| Between       | 58027.467      | 5  | 11605.493     | 10.373 | .000 |
| Groups        |                |    | 100 T. 100 A. |        |      |
| Within Groups | 26852.400      | 24 | 1118.850      |        |      |
| Total         | 84879.867      | 29 |               |        |      |

ANOVA

| Sl No. | Hybrids         | Mean      |
|--------|-----------------|-----------|
| 01.    | SID4 x SID8     | 485.8 a,b |
| 02.    | Dun17 x Dun18   | 432.5c    |
| 03.    | CSR2 x CSR4     | 490.8 a,b |
| 04.    | APS105 x APS128 | 460.9b,c  |
| 05.    | APS45 x APS12   | 470.8 a,b |
| 06.    | CSR46 x CSR47   | 498 a     |
| S.Ed ± |                 | 21.1551   |
| CD05   |                 | 36.1964   |

ANOVA reveals that the bivoltine hybrids are highly significant (p<0.01) for the trait Fecundity. The ranking of the hybrids are shown in the above table.

Table 3.2.2 : oneway Anova on hatching and rearing parameters of different bivoltine hybrids (pooled spring season).

#### ANOVA

| hatching          | Sum of    | df | Mean     | F       | Sig. |
|-------------------|-----------|----|----------|---------|------|
|                   | Squares   |    | Square   |         |      |
| Between<br>Groups | 42188.217 | 5  | 8437.643 | 211.044 | .000 |
| Within<br>Groups  | 959.531   | 24 | 39.980   |         |      |
| Total             | 43147.748 | 29 |          |         |      |

| Sl No. | Hybrids         | Mean       |
|--------|-----------------|------------|
| 01.    | SID4 x SID8     | 92.45 a,b  |
| 02.    | Dun17 x Dun18   | 51.39 c    |
| 03.    | CSR2 x CSR4     | 94.92 a    |
| 04.    | APS105 x APS128 | 53.97 c    |
| 05.    | APS45 x APS12   | 87.41 b    |
| 06.    | CSR46 x CSR47   | 93.69 a, b |
| S.Ed ± | hand as         | . 3.999    |
| CD05   |                 | 6.841      |

ANOVA reveals that the bivoltine hybrids are highly significant(p<0.01) for the hatching.

From the CD and SEd value we see that the hybrid CSR46 x CSR47,

SLD4 x SLD8 and CSR2 x CSR4 are at par.

Table reveals the rank of the tested hybrids.

From the ANOVA Table, it is observed that the difference among the performance of the various groups of hybrid (Bi x Bi) (pooled spring) with respect to the characteristic 'hatching percentage is highly significant.

The nature of significance of the difference between the said groups are given as below :

|    | Vs | 1   | 2  | 3  | 4  | 5  | 6  |
|----|----|-----|----|----|----|----|----|
| NS | 1  |     | ** | NS | ** | NS | NS |
|    | 2  | u   |    | *  | NS | ** | ** |
|    | 3  |     | "  |    | ** | *  | NS |
|    | 4  |     |    |    |    | ** | ** |
|    | 5  |     |    |    |    |    | NS |
|    | 6  | , , |    |    |    |    |    |

: Not significant

\* The

: Significant at .05 level

: Highly significant

47

 Table 3.2.3:Oneway Anova on effective rate of rearing by number and rearing

 parameters of different bivoltine hybrids (pooled spring season).

#### ANOVA

Effective rate of rearing by number

|               | Sum of           | df | Mean Square | F      | Sig. |
|---------------|------------------|----|-------------|--------|------|
|               | Squares          |    |             | 2      |      |
| Between       | 71010595.76      | 5  | 14202119.15 | 16 008 | 000  |
| Groups        | 7                | 5  | 3           | 40.998 | .000 |
| Within Groups | 7252531.200      | 24 | 302188.800  |        |      |
| Total         | 78263126.96<br>7 | 29 |             |        |      |

| Sl No. | Hybrids         | Mean       |
|--------|-----------------|------------|
| 01.    | SID4 x SID8     | 5112.1 a,b |
| 02.    | Dun17 x Dun18   | 4556.3 b,c |
| 03.    | CSR2 x CSR4     | 5086.1a,b  |
| 04.    | APS105 x APS128 | 5391.2 a   |
| 05.    | APS45 x APS12   | 3068.2     |
| 06.    | CSR48 x CSR47   | 4320 c     |
| S.Ed±  |                 | 347.6716   |
| CD.05  |                 | 594.8661   |

ANOVA reveals that the bivoltine hybrids are highly significant (p<0.01) for the trait

Effecting rate of rearing by number. From the CD and SEd value we see that the hybrid SLD4 x SLD8,

#### CSR2 x CSR4, APS105 x APS126 and SLD4 x SLD8, CSR2X CSR4 are at par.

Table reveals the rank of the tested hybrids.

From this table, it is observed that there is highly significant difference between the performance of various groups of hybrid (bi x bi) (pooled spring) with respect to the characteristic effective rate of rearing by number.

The nature of significance of the difference between the said groups are given us.

| Vs    | 1        | 2              | 3         | 4    | 5           | 6        |
|-------|----------|----------------|-----------|------|-------------|----------|
|       | τ.       |                |           | N 19 |             |          |
| 1     |          | NS             | NS        | NS   | **          | **       |
|       |          |                |           |      |             |          |
| 2     |          | <sup>×</sup> • | NS        | **   | **          | **       |
| 1.5.1 |          |                |           |      |             |          |
| 3     |          |                |           | NS   | **          | **       |
| •     | Сл.<br>К |                | 18.1      |      |             | - 54 Mer |
| 4     |          |                |           |      | **          | **       |
|       | e 18     |                |           |      |             | -10.1    |
| 5     |          | <del></del>    |           |      | · · · · · · | **       |
|       |          | ·              |           |      |             | ×        |
| 6     |          |                |           |      |             |          |
|       |          |                | х<br>ж. х |      |             |          |

: Not significant

: Significant at .05 level

\*\*

NS

: Highly significant.

Table 3.2.4: Oneway Anova on effective rate of rearing by weight and rearing parameters of different bivoltine hybrids (pooled spring season).

#### ANOVA

Effective rate of rearing by weight

|               | Sum of  | df | Mean   | F      | Sig. |
|---------------|---------|----|--------|--------|------|
|               | Squares |    | Square |        |      |
| Between       | 268 731 | 5  | 53 746 | 25 600 | 000  |
| Groups        | 200.731 | 5  | 55.740 | 25.000 | .000 |
| Within Groups | 50.386  | 24 | 2.099  |        |      |
| Total         | 319.117 | 29 |        |        |      |

| Sl No. | Hybrids         | Mean      |
|--------|-----------------|-----------|
| 01.    | SlD4 x SlD8     | 8.624 a   |
| 02.    | Dun17 x Dun18   | 6.613 b,c |
| 03.    | CSR2 x CSR4     | 8.118 a,b |
| 04.    | APS105 x APS128 | 6.042 c   |
| 05.    | APS45 x APS12   | 4.002     |
| 06.    | CSR46 x CSR47   | 6.767 b,c |
| S.Ed±  |                 | .9163     |
| CD.05  |                 | 1.5678    |

ANOVA reveals that the bivoltine hybrids are highly significant(p<0.01)for the trait effective rate of rearing by weight. From the CD and SEd value we see that the hybrid CSR2 x CSR4, SLD4 x SLD8, and Dun17 x Dun18,,CSR2X CSR4 are at par. Table reveals the rank of the tested.hybrids.

From this Table, it is seen that there is highly significant difference among the performance of various groups of hybrid (bi x bi) with respect to the characteristic 'effective rate of rearing by weight.

The nature of significance of the difference between the said groups are given us.

| ът  | 0    |
|-----|------|
| NI  | S. 1 |
| 1.1 |      |
|     |      |

\*\*

| Vs | 1 | 2 | 3   | 4   | 5  | 6  |
|----|---|---|-----|-----|----|----|
|    |   |   |     |     |    |    |
| 1  |   | * | NS  | * * | ** | *  |
| 2  |   |   | * * | NS  | ** | NS |
| 3  |   |   |     | **  | ** | *  |
| 4  |   |   |     |     | ** | NS |
| 5  |   |   |     |     |    | ** |
| 6  |   |   |     |     |    |    |

: Not significant

: Significant at .05 level

: Highly significant.

## Table 3.2.5:Oneway Anova on single cocoon weight and rearingparameters of different bivoltine hybrids (pooled spring season).

#### ANOVA

Single cocoon weight

|               | Sum of  | df | Mean   | F       | Sig.     |
|---------------|---------|----|--------|---------|----------|
|               | Squares |    | Square |         |          |
| Between       | 570     | 5  | 116    | 4 0 2 2 | 008      |
| Groups        | .379    | 5  | .110   | 4.032   | .008     |
| Within Groups | .690    | 24 | .029   |         | 10<br>10 |
| Total         | 1.269   | 29 | х.     |         | 2<br>2   |

| Sl No. | Hybrids         | Mean       |
|--------|-----------------|------------|
| 01.    | SID4 x SID8     | 1.727 a    |
| 02.    | Dun17 x Dun18   | 1.5182 b   |
| 03.    | CSR2 x CSR4     | 1.6398 a,b |
| 04.    | APS105 x APS128 | 1.5429 a,b |
| 05.    | APS45 x APS12   | 1.5973 a,b |
| 06.    | CSR46 x CSR47   | 1.6462 a,b |
| S.Ed±  |                 | .1077      |
| CD.05  |                 | .1843      |

It is highly significant(p<0.01)for the trait single cocoon weight from the CD and SEd value we see that the hybrids CSR2 x CSR4,APS105 x APS126,APS45 x APS12,

 $CSR46\ x\ CSR47$  and  $SLD4\ x\ SLD8$  are at par.

From the ANOVA table, it is observed that there is significant difference among the performance of various groups of bi x bi) hybrid with respect to the characteristic single coccoon weight.

Again the nature of significance of the difference between the said groups are given as.

| Vs | 1 | 2   | 3  | 4  | 5  | 6    |
|----|---|-----|----|----|----|------|
| 1  |   | * * | NS | *  | NS | NS   |
| 2  |   |     | NS | NS | NS | NS   |
| 3  |   |     |    | NS | NS | NS   |
| 4  |   |     |    |    | NS | NS   |
| 5  |   |     |    |    |    | NS   |
| 6  |   |     |    |    |    | 1.15 |

NS

\*

\*\*

: Not significant

: Significant at .05 level

: Highly significant.

Table 3.2.6:OnewayAnova on single shell weight and rearingparametersof different bivoltine hybrids (pooled spring season).

#### ANOVA

Single shell weight

R

|               | Sum of  | df | Mean   | F     | Sig. |
|---------------|---------|----|--------|-------|------|
|               | Squares |    | Square |       |      |
| Between       | 112     | 5  | 022    | 0.047 | 000  |
| Groups        | .112    |    | .022   | 2.247 | .000 |
| Within Groups | .054    | 24 | .002   |       |      |
| Total         | .167    | 29 |        |       |      |

| Sl No. | Hybrids         | Mean       |
|--------|-----------------|------------|
| 01.    | SID4 x SID8     | 0.398 a    |
| 02.    | Dun17 x Dun18   | 0.326 b, c |
| 03.    | CSR2 x CSR4     | 0.361a,b   |
| 04.    | APS105 x APS128 | 0.300 c    |
| 05.    | APS45 x APS12   | 0.355a,b   |
| 06.    | CSR46 x CSR47   | 0.360 a,b  |
| S.Ed±  |                 | .0283      |
| CD.05  |                 | .0484      |

ANOVA reveals that the bivoltinehybrids are highly significant (p < 0.01) for the trait single shell weight from the CD and SEd value we see that the hybrids CSR2 x CSR4, APS45 x APS12,CSR46 x CSR47 and SLD4 x SLD8 are at par. Table reveals the rank of the tested hybrids. From the ANOVA table, it is seen that the difference of the performance among the groups of hybrid (bi x bi) with respect to the characteristic 'single shell weight' is highly significant.

The nature of significance of the difference among the groups are given below.

| Vs | 1    | 2                                     | 3  | 4   | 5   | 6  |
|----|------|---------------------------------------|----|-----|-----|----|
| 1  |      | * *                                   | NS | **  | *   | NS |
| 2  | ···· |                                       | NS | NS  | NS  | NS |
| 3  |      | · · · · · · · · · · · · · · · · · · · |    | * * | NS  | NS |
| 4  |      |                                       |    |     | * * | ** |
| 5  |      |                                       |    |     |     | NS |
| 6  |      |                                       |    |     |     |    |

NS : Not significant \* : Significant at .05 level \*\* : Highly significant.

55

## Table 3.2.7:Oneway Anova on SR percentage and rearingparameters of different bivoltine hybrids (pooled spring season).

#### ANOVA

SR percentage

|               | Sum of  | df | Mean   | F     | Sig. |
|---------------|---------|----|--------|-------|------|
|               | Squares |    | Square |       |      |
| Between       | 128 /01 | 5  | 27 608 | 2 0/3 | 033  |
| Groups        | 138.491 |    | 27.098 | 2.943 | .033 |
| Within Groups | 225.865 | 24 | 9.411  |       |      |
| Total         | 364.356 | 29 |        |       |      |

| Sl No. | Hybrids         | Mean       |
|--------|-----------------|------------|
| 01.    | SID4 x SID8     | 22.974 a   |
| 02.    | Dun17 x Dun18   | 21.583 a,b |
| 03.    | CSR2 x CSR4     | 22.205 a,b |
| 04.    | APS105 x APS128 | 19.609 b   |
| 05.    | APS45 x APS12   | 22.491 a,b |
| 06.    | CSR46 x CSR47   | 22.043a,b  |
| S.Ed±  |                 | 1.9402     |
| CD.05  |                 | 3.3197     |

ANOVA reveals that the bivoltine hybrids are significant are at par. for the trait SR% ..From the CD and SEd value we see that the hybrids Dun17x Dun18, CSR2 x CSR4, APS45 x APS12, and SLD4 x SLD8 are at par.

Table reveals the rank of the tested hybrids.

Here the results of ANOVA Table indicates that there is less significant difference among the performance of the various groups of (bi x bi) hybrid with respect to the characteristic 'SR' is less significant.

So, in this case it is not necessary to study the nature of Significance of the difference between the said groups separately.

#### Table 3.2.8: Oneway Anova on yield and rearing

#### parameters of different bivoltine hybrids (pooled spring season).

#### ANOVA

Yield •

| i i engris    | Sum of   | df | Mean    | F           | Sig. |
|---------------|----------|----|---------|-------------|------|
|               | Squares  |    | Square  |             |      |
| Between       | 4145 242 | 5  | 820.068 | 47.051      | 000  |
| Groups        | 4145.342 |    | 029.000 | 47.931      | .000 |
| Within Groups | 414.961  | 24 | 17.290  |             | .10  |
| Total         | 4560.303 | 29 |         | 2<br>2<br>1 |      |

| Sl No. | Hybrids         | Mean    |
|--------|-----------------|---------|
| 01.    | SID4 x SID8     | 34.50 a |
| 02.    | Dun17 x Dun18   | 26.45 b |
| 03.    | CSR2 x CSR4     | 32.47 a |
| 04.    | APS105 x APS128 | 26.56 b |
| 05.    | APS45 x APS12   | 16.01   |
| 06.    | CSR46 x CSR47   | 27.07 b |
| S.Ed±  |                 | 2.6298  |
| CD.05  |                 | 4.4996  |

It is highly significant (p<0.01) for the trait yield. From CD and SEd value we see that the hybrids CSR2 x CSR4, SLD4 x SLD8 and APS105 x APs126, CSR46 x CSR47, Dun17 x Dun18 are at par.

From the ANOVA table, it is observed that the difference among the performance of the various groups of hybrid (bi x bi) with respect to the characteristic 'yield' is highly significant.

The nature of significance of the difference between the said group with respect to the characteristic "yield" are tabulated as.

| Vs | .1                                    | 2             | 3  | 4   | 5  | 6  |
|----|---------------------------------------|---------------|----|-----|----|----|
|    |                                       |               | -  |     |    |    |
| 1  |                                       | **            | NS | **  | ** | ** |
| 2  |                                       |               | ** | NS  | ** | NS |
| 3  |                                       |               |    | * * | ** | ** |
| 4  | · · · · · · · · · · · · · · · · · · · |               |    |     | ** | NS |
| 5  |                                       |               |    |     |    | ** |
| 6  |                                       | с.,—-»<br>с., |    |     |    |    |

NS : Not significant

\*

: Significant at .05 level

\*\* : Highly significant.

## Table 3.2.9:Oneway Anova on filament length and rearingparameters of different bivoltine hybrids (pooled spring season).

#### ANOVA

Filament length

|                   | Sum of         | df | Mean      | F      | Sig. |
|-------------------|----------------|----|-----------|--------|------|
|                   | Squares        |    | Square    |        |      |
| Between<br>Groups | 352075.9<br>00 | 5  | 70415.180 | 12.037 | .000 |
| Within<br>Groups  | 140398.4<br>00 | 24 | 5849.933  |        |      |
| Total             | 492474.3<br>00 | 29 |           |        |      |

| Sl No. | Hybrids         | Mean         |
|--------|-----------------|--------------|
| 01.    | SID4 x SID8     | 784.8 a, b   |
| 02.    | Dun17 x Dun18   | 732.2 b, c   |
| 03.    | CSR2 x CSR4     | 742.5a, b, c |
| 04.    | APS105 x APS128 | 681.6 c      |
| 05.    | APS45 x APS12   | 659.8 c      |
| 06.    | CSR46 x CSR47   | 816 a        |
| S.Ed ± |                 | 48.3733      |
| CD.05  |                 | 82.7667      |

ANOVA reveals that the bivoltine hybrids are highly significant(p<0.01) for the trait

Filament length. From the CD and SEd value we see that the hybrid CSR46 x CSR47 and CSR2 x CSR4, SLD4 x SLD8 are at par.

Table reveals the rank of the tested hybrids.

From this table, it is seen that there is highly significant difference among the performance of various groups of hybrid (bi x bi) (Pooled spring) with respect to the characteristic 'filament length'.

The nature of significance of the difference between the said groups are tabulated as below.

| Vs   | 1               | 2  | 3      | 4   | 5   | 6  |
|------|-----------------|----|--------|-----|-----|----|
| 10 A |                 |    |        |     |     |    |
| 1    |                 | NS | NS     | * * | * * | NS |
|      |                 |    |        |     |     |    |
| 2    |                 |    | NS     | NS  | **  | ** |
|      | 6 A             |    | 2<br>2 |     |     |    |
| 3    |                 |    |        | NS  | *   | ** |
|      |                 |    |        |     |     |    |
| 4    |                 |    |        |     | NS  | ** |
|      |                 |    |        |     |     |    |
| 5    | · · · · · · · · |    | 1      | ,   |     | ** |
|      |                 |    |        |     |     | •  |
| 6    |                 |    |        |     |     |    |
|      |                 |    |        |     |     |    |

NS : Not significant

\*

\*\*

: Significant at .05 level

: Highly significant.

Ster

### Table 3.2.10: Oneway Anova on filament size and rearing parameters of different bivoltine hybrids (pooled spring season).

#### ANOVA

#### Filament size

|               | Sum of Squares | df | Mean Square | F      | Sig. |
|---------------|----------------|----|-------------|--------|------|
| Between       | 6 164          | 5  | 1 233       | 16 205 | 000  |
| Groups        | 0.101          | 5  | 1.255       | 10.205 | .000 |
| Within Groups | 1.826          | 24 | .076        |        |      |
| Total         | 7.990          | 29 |             |        |      |

| Sl No. | Hybrids         | Mean      |
|--------|-----------------|-----------|
| 01.    | SID4 x SID8     | 2.737 c   |
| 02.    | Dun17 x Dun18   | 2.557c    |
| 03.    | CSR2 x CSR4     | 3.131 a   |
| 04.    | APS105 x APS128 | 2.786 b,c |
| 05.    | APS45 x APS12   | 2.529 c   |
| 06.    | CSR46 x CSR47.  | 3.049a,b  |
| S.Ed±  |                 | .1744     |
| CD.05  |                 | .2984     |

ANOVA reveals that the bivoltine hybrids are highly significant(p<0.01)for the trait filament size. From the CD and SEd value we see that the hybrid CSR46 x CSR47 and

CSR2 x CSR4 are at par.

Table reveals the rank of the tested hybrids.

From the ANOVA table, it is observed that the difference among the various groups of hybrid (bi x bi) with respect to the characteristic 'filament size' is highly significant.

The nature of significance between the said groups are tabulated as below.

| Vs | 1      | 2  | 3         | 4  | 5  | 6  |
|----|--------|----|-----------|----|----|----|
| 1  |        | NS | **        | NS | NS | NS |
| 2  |        |    | **        | NS | NS | ** |
| 3  | 1      |    | * <b></b> | *  | ** | NS |
| 4  |        |    |           |    | NS | NS |
| 5  | 2<br>1 |    |           |    |    | ** |
| 6  |        |    |           |    |    |    |

NS

: Not significant

\*

- : Significant at .05 level
- \*\*
- : Highly significant.

### Table 3.2.11:Oneway Anova on filament weight and rearingparameters of different bivoltine hybrids (pooled spring season).

#### ANOVA

Filament weight

|                   | Sum of  | df | Mean    | F      | Sig. |
|-------------------|---------|----|---------|--------|------|
|                   | Squares |    | Square  |        |      |
| Between<br>Groups | 893.282 | 5  | 178.656 | 86.461 | .000 |
| Within Groups     | 49.592  | 24 | 2.066   |        |      |
| Total             | 942.874 | 29 |         |        |      |

| Sl No. | Hybrids         | Mean    |
|--------|-----------------|---------|
| 01.    | SID4 x SID8     | 23.86 b |
| 02.    | Dun17 x Dun18   | 24.90 b |
| 03.    | CSR2 x CSR4     | 26.92 a |
| 04.    | APS105 x APS128 | 20.35c  |
| 05.    | APS45 x APS12   | 20.25 c |
| 06.    | CSR46 x CSR47   | 26.83 a |
| S.Ed±  |                 | .9091   |
| CD.05  |                 | 1.5555  |

ANOVA reveals that the bivoltine hybrids are highly significant(p<0.01)for the trait filament weight. From the CD and SEd value we see that the hybrid CSR46 x CSR47 and

CSR2 x CSR4 and SLD4 x SLD8 are at par.

Table reveals the rank of the tested hybrids.

Here, the difference among the performance of various groups of hybrid (Bi x Bi) (Pooled spring) with respect to the characteristic 'filament weight' is highly significant.

The nature of significance of the difference between the said groups are shown as below.

| Vs | 1 | 2  | 3  | 4  | 5  | 6   |
|----|---|----|----|----|----|-----|
| 1  |   | NS | ** | ** | ** | **  |
| 2  |   |    | *  | ** | ** | **  |
| 3  |   |    |    | ** | ** | NS  |
| 4  |   |    |    |    | NS | * * |
| 5  |   |    |    |    |    | * * |
| 6  |   |    |    |    |    |     |

NS : Not significant

- \* : Significant at .05 level
- \*\* : Highly significant.

### Table 3.2.12:Oneway Anova on raw silk and rearingparameters of different bivoltine hybrids (pooled spring season).

#### ANOVA

Raw silk

|               | Sum of    | df | Mean    | F       | Sig.      |  |
|---------------|-----------|----|---------|---------|-----------|--|
|               | 5 quui es |    | oquare  |         | 24 - V.S. |  |
| Between       | (00,(02   | F  | 127 701 | 101 200 | 000       |  |
| Groups        | 688.603   | S  | 137.721 | 121.300 | .000      |  |
| Within Groups | 27.249    | 24 | 1.135   |         |           |  |
| Total         | 715.852   | 29 |         |         |           |  |

| Sl No. | Hybrids         | Mean      |
|--------|-----------------|-----------|
| 01.    | SID4 x SID8     | 31.617 b  |
| 02.    | Dun17 x Dun18   | 31.522 b  |
| 03.    | CSR2 x CSR4     | 35.895a   |
| 04.    | APS105 x APS128 | 34.7876 a |
| 05.    | APS45 x APS12   | 29.712    |
| 06.    | CSR46 x CSR47   | 35.977 a  |
| S.Ed±  |                 | .6738     |
| CD.05  |                 | 1.1529    |

ANOVA reveals that the bivoltine hybrids are highly significant (p<0.01) for the trait raw silk. From the CD and SEd value we see that the hybrid CSR46 x CSR47, APS105 x APS126, CSR2 x CSR4 and SLD4 x SLD8, Dun17 x Dun18 are at par. Table reveals the rank of the tested hybrids.

From this table, it is observed that the difference of the performance among the groups of hybrid (bi x bi) with respect to the characteristic 'raw silk' is highly significant.

The nature of significance of the difference of the performance of the said groups are tabulated as.

| Vs | 1 | 2  | 3  | 4  | 5  | 6  |
|----|---|----|----|----|----|----|
| 1  |   | NS | ** | ** | ** | ** |
| 2  |   |    | ** | ** | ** | ** |
| 3  |   |    |    | NS | ** | NS |
| 4  |   |    |    |    | ** | NS |
| 5  |   |    | ·  |    |    | *  |
| 6  |   |    |    |    |    |    |

NS : Not significant

\*

\*\*

: Significant at .05 level

: Highly significant.

245

# Table 3.2.13:Oneway Anova on reelability and rearingparameters of different bivoltine hybrids (pooled spring season).

#### ANOVA

Reelability

|               | Sum of  | df | Mean   | F     | Sig. |
|---------------|---------|----|--------|-------|------|
|               | Squares |    | Square |       |      |
| Between       | 72.058  | 5  | 14 612 | 2 786 | 040  |
| Groups        | 75.058  | 5  | 14.012 | 2.700 | .040 |
| Within Groups | 125.862 | 24 | 5.244  |       |      |
| Total         | 198.919 | 29 |        |       |      |

| Sl No. | Hybrids         | Mean    |
|--------|-----------------|---------|
| 01.    | SID4 x SID8     | 84.48 a |
| 02.    | Dun17 x Dun18   | 85.11 a |
| 03.    | CSR2 x CSR4     | 83.43 a |
| 04.    | APS105 x APS128 | 83.32 a |
| 05.    | APS45 x APS12   | 82.85 a |
| 06.    | CSR48 x CSR47   | 83.14 a |
| S.Ed±  |                 | 1.448   |
| CD.05  |                 | 2.478   |

It is significant and all hybrids are at par.

From the ANOVA table, it is seen that the difference of the performance of the various groups of (bi x bi) hybrid with respect to the characteristic 'reliability' is less significant.

So, in this case there is no need to study the nature of Significance of the difference among the said groups.

 Table 3.2.14: Oneway Anova on neatness and rearing parameters of different

 bivoltine hybrids (pooled spring season).

#### ANOVA

Neatness

|                                             | Sum of<br>Squares        | df Mean<br>Square |               | F      | Sig. |
|---------------------------------------------|--------------------------|-------------------|---------------|--------|------|
| Between<br>Groups<br>Within Groups<br>Total | 14.167<br>.000<br>14.167 | 5<br>24<br>29     | 2.833<br>.000 | 1.356. | .377 |

Here, the difference among the performance of various groups of hybrid (bi X bi) with respect to the characteristic 'neatness' is not significant.

Table 3.2.15: Oneway Anova on boil-off and rearing parameters of differentbivoltine hybrids (pooled spring season).

#### ANOVA

|                   | Sum of  | df | Mean   | F     | Sig  |
|-------------------|---------|----|--------|-------|------|
|                   | Squares | ui | Square |       | Sig. |
| Between<br>Groups | 169.721 | 5  | 33.944 | 1.261 | .313 |
| Within Groups     | 645.858 | 24 | 26.911 |       |      |
| Total             | 815.579 | 29 |        |       |      |

Boil-off

From this ANOVA Table, it is observed that there no significant difference between the performance of various groups of hybrid (bi x bi) (pooled spring) with respect to the Characteristic 'Boil-off'.

### **Correlation co-efficients of Bivoltine x Bivoltine hybrids (pooled spring season): Correlations**

Simple correlation co-efficient between fecundity and other qualitative traits of First breed (SLD4xSLD8)(pooled spring) (**Table 3.2.16**)

|             |                        | fecundi | hatching | errby             | errbywt | sgcocnwt | sgshlwt | SR    | yield             |
|-------------|------------------------|---------|----------|-------------------|---------|----------|---------|-------|-------------------|
| 1           | 5 MI - 11              | ty      |          | no                |         |          |         |       |                   |
|             | Pearson                | 1       | 779      | 568               | 732     | 031      | 048     | - 046 | 732               |
| Foundity    | Correlation            |         |          |                   | .752    | .051     |         | .010  |                   |
| reculally   | Sig. (2-tailed)        |         | .120     | .317              | .160    | .961     | .939    | .942  | .160              |
|             | Ν                      | 5       | 5        | 5                 | 5       | 5        | 5       | 5     | 5                 |
|             | Pearson<br>Correlation | .779    | 1        | .877              | .925*   | .383     | .568    | .062  | .925*             |
| Hatching    | Sig. (2-tailed)        | .120    |          | .051              | .024    | .524     | .318    | .922  | .024              |
|             | Ν                      | 5       | 5        | 5                 | 5       | - 5      | 5       | 5     | 5                 |
| <b>T</b> _1 | Pearson<br>Correlation | .568    | .877     | 1                 | .976**  | .715     | .556    | 321   | .976 <sup>*</sup> |
| Errbyno     | Sig. (2-tailed)        | .317    | .051     |                   | .004    | .175     | .330    | .598  | .004              |
|             | Ν                      | 5       | 5        | 5                 | 5       | 5        | 5       | 5     | 5                 |
| I           | Pearson<br>Correlation | .732    | .925*    | .976 <sup>*</sup> | 1       | .597     | .472    | 284   | 1.000             |
| Errbywt     | Sig. (2-tailed)        | .160    | .024     | .004              |         | .288     | .422    | .643  | .000              |
|             | Ν                      | 5       | 5        | 5                 | 5       | 5        | 5       | 5     | 5                 |
| 0           | Pearson<br>Correlation | .031    | .383     | .715              | .597    | 1        | .162    | 705   | .597              |
| Sgcocnwt    | Sig. (2-tailed)        | .961    | .524     | .175              | .288    |          | .794    | .183  | .288              |
| 3           | N                      | 5       | 5        | 5                 | 5       | 5        | 5       | 5     | 5                 |
| G 11        | Pearson<br>Correlation | .048    | .568     | .556              | .472    | .162     | 1       | .447  | .472              |
| Sgshlwt     | Sig. (2-tailed)        | .939    | .318     | .330              | .422    | .794     |         | .450  | .422              |
|             | Ν                      | 5       | 5        | 5                 | 5       | 5        | 5       | 5     | 5                 |
| CD          | Pearson<br>Correlation | 046     | .062     | 321               | 284     | 705      | .447    | 1     | 284               |
| SR          | Sig. (2-tailed)        | .942    | .922     | .598              | .643    | .183     | .450    |       | .643              |
|             | Ν                      | 5       | 5        | 5                 | 5       | 5        | 5       | 5     | •5                |
| *           | Pearson<br>Correlation | .732    | .925*    | .976 <sup>*</sup> | 1.000** | .597     | .472    | 284   | 1                 |
| Yield       | Sig. (2-tailed)        | .160    | .024     | .004              | .000    | .288     | .422    | .643  |                   |
|             | Ν                      | 5       | 5        | 5                 | . 5     | 5        | 5       | 5     | 5                 |

#### Correlations

\*. Correlation is significant at the 0.05 level (2-tailed).

\*\*. Correlation is significant at the 0.01 level (2-tailed).

Conclusion : C.C between various qualitative traits of  $1^{st}$  hybrid (SLD4 x SLD8) under pooled spring season.

Here, we have considered qualitative traits of six hybrid under pooled spring season. The various qualitative traits are levels as

| Qualitative trait                   | levels |
|-------------------------------------|--------|
| Fecundity                           | 1      |
| Hatching                            | 2      |
| Effective rate of rearing by number | 3      |
| Effective rate of rearing by weight | 4      |
| Single cocoon weight                | 5      |
| Single shell weight                 | 6      |
| SR.                                 | 7      |
| Yield                               | 8      |

**Description**: The coefficient of correlation(C.C) were calculated on the basis of Pearson's coefficient of correlation and the significance of difference between various characteristics were based on t-test (Two tailed). Again the **N.H.** was considered as

Ho:  $\rho=0$ , i.e. the correlation coefficient was not significant.

From, the calculation of C.C and on the basis of the calculated value of ItI, the following table indicates the levels of significance of C.C between various qualitative characteristics as

| level | 1  | 2      | 3       | 4       | 5  | 6  | 7  | 8       |
|-------|----|--------|---------|---------|----|----|----|---------|
| 1     |    | NS     | NS      | NS      | NS | NS | NS | NS      |
| 2     | NS |        | NS      | Sig(*)  | NS | NS | NS | Sig(*)  |
| 3     | NS | NS     |         | Sig(**) | NS | NS | NS | Sig(**) |
| 4     | NS | Sig(*) | Sig(**) |         | NS | NS | NS | Sig(**) |
| 5     | NS | NS     | NS      | NS      |    | NS | NS | NS      |
| 6     | NS | NS     | NS      | NS      | NS |    | NS | NS      |
| 7     | NS | NS     | NS      | NS      | NS | NS |    | NS      |
| 8     | NS | Sig(*) | Sig(**) | Sig(**) | NS | NS | NS |         |

NS : Not significant

Sig(\*) : Significant at .05 level

Sig(\*\*) : Highly significant (both at .05 and .01 levels).

From the above results it is observed that the coefficient of correlation between the

- i) Characteristics hatching and effective rate of rearing by weight as significant.
- ii) Characteristics hatching and yield is significant.
- iii) Characteristics effective rate of rearing by number and effective rate of rearing by weight is highly significant.
- iv) Characteristics effective rate of rearing by number and yield is highly significant.
- v) Characteristics err by wt and yield is highly significant.

#### Correlations

Simple correlation co-efficients between fecundity and other qualitative traits of second breed (DUN17xDUN18) (pooled Spring) Table 3.2.17

|           |                        |               | (        | orrelatio | ons     |          |         |           |         |
|-----------|------------------------|---------------|----------|-----------|---------|----------|---------|-----------|---------|
| 1.1.24    |                        | fecun<br>dity | hatching | Errbyno   | Errbywt | Sgcocnwt | sgshlwt | SR        | yield   |
|           | Pearson<br>Correlation | 1             | 466      | 616       | .634    | 189      | .442    | .497      | .634    |
| Fecundity | Sig. (2-tailed)        |               | .429     | .269      | .250    | .761     | .456    | .395      | .250    |
|           | Ν                      | 5             | 5        | 5         | 5       | 5        | 5       | 5         | 5       |
| Hatching  | Pearson<br>Correlation | 466           | 1        | .290      | 319     | .861     | .111    | -<br>.121 | 319     |
| Hatening  | Sig. (2-tailed)        | .429          |          | .636      | .601    | .061     | .859    | .846      | .601    |
|           | Ν                      | 5             | 5        | 5         | 5       | 5        | 5       | 5         | 5       |
| Errhyno   | Pearson<br>Correlation | 616           | .290     | 1         | 846     | 225      | .220    | .281      | 846     |
| LIIUyilu  | Sig. (2-tailed)        | .269          | .636     |           | .071    | .715     | .722    | .647      | .071    |
|           | Ν                      | 5             | 5        | 5         | 5       | 5        | 5       | 5         | 5       |
| Feebraut  | Pearson<br>Correlation | .634          | 319      | 846       | 1       | .058     | 364     | .338      | 1.000** |
| EIIUywi   | Sig. (2-tailed)        | .250          | .601     | .071      | 1.<br>  | .926     | .547    | .578      | .000    |
|           | Ν                      | 5             | 5        | 5         | 5       | 5        | 5       | 5         | 5       |
| Sacoput   | Pearson<br>Correlation | 189           | .861     | 225       | .058    | 1        | .011    | -<br>.267 | .058    |
| Sgebenwi  | Sig. (2-tailed)        | .761          | .061     | .715      | .926    |          | .986    | .664      | .926    |
|           | Ν                      | 5             | 5        | 5         | 5       | 5        | 5       | 5         | 5       |
| Sechlurt  | Pearson<br>Correlation | .442          | .111     | .220      | 364     | .011     | 1       | .958*     | 364     |
| Sgsmwt    | Sig. (2-tailed)        | .456          | .859     | .722      | .547    | .986     |         | .010      | .547    |
|           | Ν                      | 5             | 5        | 5         | 5       | 5        | 5       | 5         | 5       |
| SD        | Pearson<br>Correlation | .497          | 121      | .281      | 338     | 267      | .958*   | 1         | 338     |
| SK        | Sig. (2-tailed)        | .395          | .846     | .647      | .578    | .664     | .010    |           | .578    |
|           | Ν                      | 5             | 5        | 5         | 5       | 5        | 5.      | 5         | 5       |
|           | Pearson<br>Correlation | .634          | 319      | 846       | 1.000** | .058     | 364     | -<br>.338 | 1       |
| yıeld     | Sig. (2-tailed)        | .250          | .601     | .071      | .000    | .926     | .547    | .578      |         |
|           | Ν                      | 5             | 5        | 5         | 5       | 5        | 5       | 5         | 5       |

\*\*. Correlation is significant at the 0.01 level (2-tailed).

\*. Correlation is significant at the 0.05 level (2-tailed).

**Conclusion** : C.C between various qualitative traits of  $2^{nd}$  hybrid (Dun17 x Dun18)under pooled spring season.

**Description**: The coefficient of correlation (C.C) are calculated on the basis of Pearson's coefficient of correlation and the significance of the C.C between the various characteristics are based on t-test (Two tailed). Again the **N.H.** is considered as

Ho:  $\rho=0$ , i.e. the correlation coefficient is not significant.

From, the calculation of C.C and on the basis of the calculated value of ItI, the following table indicate the levels of significance of C.C between various qualitative Characteristics as

| level | 1  | 2  | 3  | 4       | 5  | 6      | 7      | 8       |
|-------|----|----|----|---------|----|--------|--------|---------|
| 1     |    | NS | NS | NS      | NS | NS     | NS     | NS      |
| 2     | NS |    | NS | NS      | NS | NS     | NS     | NS      |
| 3     | NS | NS |    | NS      | NS | NS     | NS     | NS      |
| 4     | NS | NS | NS |         | NS | NS     | NS     | Sig(**) |
| 5     | NS | NS | NS | NS      |    | NS     | NS     | NS      |
| 6     | NS | NS | NS | NS      | NS |        | Sig(*) | NS      |
| 7     | NS | NS | NS | NS      | NS | Sig(*) |        | NS      |
| 8     | NS | NS | NS | Sig(**) | NS | NS     | NS     |         |

Thus from the above one may conclude that the C.C.

- Between the characteristics effective rate of rearing by weight and yield is highly significant.
- ii) Between fecundity and effective rate of rearing by number and
- iii) Between characteristics single shell weight and SR is significant.

Simple correlation co-efficients between fecundity and other qualitative traits of third breed (CSR2xCSR4) (pooled spring) **Table 3.2.18** 

|           |                        | fecun | hatching | errbyno | errbywt | sgcocnt | sgshlt | SR        | yield            |
|-----------|------------------------|-------|----------|---------|---------|---------|--------|-----------|------------------|
|           |                        | alty  |          |         |         | -       |        |           |                  |
|           | Pearson<br>Correlation | 1     | .203     | 211     | .081    | .557    | 332    | 868       | .081             |
| Fecundity | Sig. (2-tailed)        |       | .743     | .734    | .898    | .329    | .585   | .056      | .898             |
|           | Ν                      | 5     | . 5      | 5       | 5       | 5       | 5      | 5         | 5                |
|           | Pearson<br>Correlation | .203  | 1        | 999**   | 904*    | .201    | .049   | -<br>.212 | 904 <sup>*</sup> |
| Hatching  | Sig. (2-tailed)        | .743  |          | .000    | .035    | .745    | .938   | .732      | .035             |
|           | Ν                      | 5     | 5        | 5       | 5       | 5       | 5      | 5         | 5                |
| E. I.     | Pearson<br>Correlation | 211   | 999***   | 1       | .892*   | 221     | 076    | .198      | .892*            |
| Errbyno   | Sig. (2-tailed)        | .734  | .000     |         | .042    | .721    | .903   | .749      | .042             |
|           | N                      | 5     | 5        | 5       | 5       | 5       | 5      | 5         | 5                |
|           | Pearson<br>Correlation | .081  | 904*     | .892*   | 1       | .224    | .170   | .078      | 1.000*           |
| Errbywt   | Sig. (2-tailed)        | .898  | .035     | .042    |         | .717    | .785   | .900      | .000             |
|           | Ν                      | 5     | 5        | 5       | 5       | 5       | 5      | - 5       | 5                |
| George    | Pearson<br>Correlation | .557  | .201     | 221     | .224    | 1       | .530   | -<br>.294 | .224             |
| Sgcocnt   | Sig. (2-tailed)        | .329  | .745     | .721    | .717    |         | .358   | .631      | .717             |
| 1.1       | Ν                      | 5     | 5        | 5       | 5       | 5       | 5      | 5         | 5                |
| G - 14    | Pearson<br>Correlation | 332   | .049     | 076     | .170    | .530    | 1      | .651      | .170             |
| Sgshit    | Sig. (2-tailed)        | .585  | .938     | .903    | .785    | .358    |        | .234      | .785             |
|           | Ν                      | 5     | 5        | 5       | 5       | 5       | 5      | 5         | 5                |
| -         | Pearson<br>Correlation | 868   | 212      | .198    | .078    | 294     | .651   | 1         | .078             |
| SR        | Sig. (2-tailed)        | .056  | .732     | .749    | .900    | .631    | .234   |           | .900             |
|           | Ν                      | 5     | 5        | 5       | 5       | 5       | 5      | 5         | 5                |
| 17-11     | Pearson<br>Correlation | .081  | 904*     | .892*   | 1.000*  | .224    | .170   | .078      | 1                |
| Yield     | Sig. (2-tailed)        | .898  | .035     | .042    | .000    | .717    | .785   | .900      | e                |
|           | Ν                      | 5     | 5        | 5       | 5       | 5       | 5      | 5         | 5                |

Correlations

\*\*. Correlation is significant at the 0.01 level (2-tailed).

\*. Correlation is significant at the 0.05 level (2-tailed).

Conclusion : C.C between various qualitative traits of  $3^{rd}$  hybrid(CSR2 x CSR4) under pooled spring season.

**Description:** The coefficient of correlation(C.C) are calculated on the basis of pearson's coefficient of correlation and the significance of the C.C between the various characteristics are based on t-test (Two tailed). Again the **N.H.** is considered as

Ho :  $\rho$ =O, i.e. the correlation coefficient is not significant.

From, the calculation of C.C and on the basis of the calculated value of ItI, the following table indicates the levels of significance of C.C between various qualitative characteristics as

| level | 1                | 2       | 3       | 4       | 5  | 6                           | 7  | 8       |
|-------|------------------|---------|---------|---------|----|-----------------------------|----|---------|
| 1     | 1 <sup>0</sup> 1 | NS      | NS      | NS      | NS | NS                          | NS | NS      |
| 2     | NS               |         | Sig(**) | Sig(*)  | NS | NS                          | NS | Sig(*)  |
| 3     | NS               | Sig(**) |         | Sig(*)  | NS | NS                          | NS | Sig(*)  |
| 4     | NS               | Sig(*)  | Sig(*)  |         | NS | NS                          | NS | Sig(**) |
| 5     | NS               | NS      | NS      | NS      |    | NS                          | NS | NS      |
| 6     | NS               | NS      | NS      | NS      | NS | <u>10 - 1</u> - 10 - 10<br> | NS | NS      |
| 7     | NS               | NS      | NS      | NS      | NS | NS                          |    | NS      |
| 8     | NS               | Sig(*)  | Sig(*)  | Sig(**) | NS | NS                          | NS |         |

NS : Not significant

Sig(\*) : Significant at 0.5 level

Sig(\*\*) : Highly significant (both at .05 and .01 levels).

From the above results it can be conclude that the coefficient of correlation

- i) Between hatching & effective rate of rearing by number is highly.
- ii) Between hatching & effective rate of rearing by weight is significant.

iii) Between hatching & yield is significant.

#### Between effective rate of rearing by weight and yield is highly iv) significant.

#### Correlations

Simple correlation co-efficients between fecundity and other qualitative traits of 4th breed (APS105xAPS126)(pooled Spring) Table 3.2.19

|           | and the second data and the second data and the |               |          | Correl  | ations  |          | -       | and the second se |        |
|-----------|-------------------------------------------------|---------------|----------|---------|---------|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|           |                                                 | fecundi<br>ty | hatching | errbyno | errbywt | sgcocont | sgshlwt | SR .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | yield  |
|           | Pearson<br>Correlation                          | 1             | .610     | 038     | .896*   | 386      | 536     | 088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 092    |
| Fecundity | Sig. (2-<br>tailed)                             |               | .275     | .952    | .039    | .521     | .352    | .888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .882   |
|           | Ν                                               | 5             | 5        | 5       | 5       | 5        | 5       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5      |
|           | Pearson<br>Correlation                          | .610          | 1        | .244    | .856    | .487     | 245     | 684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .214   |
| Hatching  | Sig. (2-<br>tailed)                             | .275          |          | .693    | .064    | .406     | .691    | .203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .730   |
|           | Ν                                               | 5             | 5        | 5       | 5       | 5        | 5       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5      |
|           | Pearson<br>Correlation                          | 038           | .244     | 1       | .087    | .185     | 249     | 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .997** |
| Errbyno   | Sig. (2-<br>tailed)                             | .952          | .693     |         | .890    | .765     | .687    | .435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .000   |
|           | Ν                                               | 5             | 5        | 5       | 5       | 5        | 5       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5      |
|           | Pearson<br>Correlation                          | .896*         | .856     | .087    | 1       | .005     | 597     | 504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .027   |
| Errbywt   | Sig. (2-<br>tailed)                             | .039          | .064     | .890    |         | .993     | .288    | .386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .966   |
| 1. N. N.  | Ν                                               | 5             | 5        | 5       | 5       | 5        | 5       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5      |
|           | Pearson<br>Correlation                          | 386           | .487     | .185    | .005    | 1        | .372    | 642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .213   |
| Sgcocont  | Sig. (2-<br>tailed)                             | .521          | .406     | .765    | .993    |          | .537    | .243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .731   |
|           | Ν                                               | 5             | 5        | 5       | 5       | 5        | 5       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5      |
|           | Pearson<br>Correlation                          | 536           | 245      | 249     | 597     | .372     | 1       | .468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 169    |
| Sgshlwt   | Sig. (2-<br>tailed)                             | .352          | .691     | .687    | .288    | .537     |         | .427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .786   |
|           | Ν                                               | 5             | 5        | 5       | 5       | 5        | 5       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5      |
|           | Pearson<br>Correlation                          | 088           | 684      | 460     | 504     | 642      | .468    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 423    |
| SR        | Sig. (2-<br>tailed)                             | .888          | .203     | .435    | .386    | .243     | .427    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .478   |
|           | Ν                                               | 5             | 5        | 5       | 5       | 5        | 5       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5      |
|           | Pearson<br>Correlation                          | 092           | .214     | .997**  | .027    | .213     | 169     | 423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1      |
| Yield     | Sig. (2-<br>tailed)                             | .882          | .730     | .000    | .966    | .731     | .786    | .478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|           | Ν                                               | 5             | 5        | 5       | 5       | 5        | 5       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5      |

nuclation

\*. Correlation is significant at the 0.05 level (2-tailed).

\*\*. Correlation is significant at the 0.01 level (2-tailed).

**Conclusion:** C.C between various qualitative traits of 4<sup>th</sup> hybrid(APS105 x APS126) under pooled spring season.

**Description**: The coefficient of correlation(C.C) are calculated on the basis of pearson's coefficient of correlation and the significance of the C.C between the various characteristics are based on t-test (Two tailed). Again the **N.H**. is considered as

Ho:  $\rho=0$ , i.e. the correlation coefficient is not significant.

From, the calculation of C.C and on the basis of the calculated value of ItI, the following table indicates the levels of significance of C.C between various qualitative characteristics as

| level | 1      | 2  | 3       | 4      | 5  | 6  | 7  | 8       |
|-------|--------|----|---------|--------|----|----|----|---------|
| 1     |        | NS | NS      | Sig(*) | NS | NS | NS | NS      |
| 2     | NS     | ,  | NS      | NS     | NS | NS | NS | NS      |
| 3     | NS     | NS |         | NS     | NS | NS | NS | Sig(**) |
| 4     | Sig(*) | NS | NS      | ,      | NS | NS | NS | NS      |
| 5     | NS     | NS | NS      | NS     |    | NS | NS | NS      |
| 6     | NS     | NS | NS      | NS     | NS |    | NS | NS      |
| 7     | NS     | NS | NS      | NS     | NS | NS |    | NS      |
| 8     | NS     | NS | Sig(**) | NS     | NS | NS | NS |         |

NS : Not significant

Sig(\*) : Significant at 0.5 level

Sig(\*\*) : Highly significant (both at .01 and .05 levels).

From the above results it can be conclude that the C.C between

i) Fecundity Effective rate of rearing by weight is significant.

ii) Effective rate of rearing by number and yield is highly significant.

#### Correlations

Simple correlation co-efficients between fecundity and other qualitative traits of 5th hybrid (APS45x APS12)(pooled spring) Table 3.2.20

|           |                        | fecun | hatching | errbyno | errbywt | sgcocnwt | sgshlwt | SR        | yield   |
|-----------|------------------------|-------|----------|---------|---------|----------|---------|-----------|---------|
|           |                        | dity  |          |         |         |          |         |           |         |
|           | Pearson<br>Correlation | 1     | .499     | .509    | .530    | 505      | 116     | .230      | .530    |
| Fecundity | Sig. (2-tailed)        |       | .392     | .381    | .358    | .385     | .853    | .710      | .358    |
|           | Ν                      | 5     | 5        | 5       | 5       | 5        | 5       | 5         | 5       |
|           | Pearson<br>Correlation | .499  | 1        | .508    | .594    | 372      | .801    | .638      | .594    |
| Hatching  | Sig. (2-tailed)        | .392  |          | .382    | .291    | .538     | .103    | .247      | .291    |
|           | N                      | 5     | 5        | 5       | 5       | 5        | 5       | 5         | 5       |
|           | Pearson<br>Correlation | .509  | .508     | 1       | .995**  | .109     | .208    | .046      | .995**  |
| Errbyno   | Sig. (2-tailed)        | .381  | .382     |         | .000    | .862     | .737    | .941      | .000    |
|           | Ν                      | 5     | 5        | 5       | 5       | 5        | 5       | 5         | 5       |
|           | Pearson<br>Correlation | .530  | .594     | .995**  | 1       | .051     | .294    | .041      | 1.000** |
| Errbywt   | Sig. (2-tailed)        | .358  | .291     | .000    |         | .935     | .631    | .948      | .000    |
|           | Ν                      | 5     | 5        | 5       | 5       | 5        | 5       | 5         | 5       |
|           | Pearson<br>Correlation | 505   | 372      | .109    | .051    | 1        | 132     | -<br>.849 | .051    |
| Sgcocnwt  | Sig. (2-tailed)        | .385  | .538     | .862    | .935    |          | .832    | .069      | .935    |
|           | Ν                      | 5     | 5        | 5       | 5       | 5        | 5       | 5         | 5       |
|           | Pearson<br>Correlation | 116   | .801     | .208    | .294    | 132      | 1       | .620      | .294    |
| Sgshlwt   | Sig. (2-tailed)        | .853  | .103     | .737    | .631    | .832     |         | .264      | .631    |
|           | N                      | 5     | 5        | 5       | 5       | 5        | 5       | 5         | 5       |
|           | Pearson<br>Correlation | .230  | .638     | 046     | .041    | 849      | .620    | 1         | .041    |
| SR        | Sig. (2-tailed)        | .710  | .247     | .941    | .948    | .069     | .264    |           | .948    |
|           | Ν                      | 5     | 5        | 5       | 5       | 5        | 5       | 5         | 5       |
|           | Pearson<br>Correlation | .530  | .594     | .995**  | 1.000** | .051     | .294    | .041      | • 1     |
| Yield     | Sig. (2-tailed)        | .358  | .291     | .000    | .000    | .935     | .631    | .948      |         |
|           | Ν                      | 5     | 5        | 5       | 5       | . 5      | 5       | 5         | 5       |

#### Correlations

\*\*. Correlation is significant at the 0.01 level (2-tailed).

**Conclusion:** C.C between various qualitative traits of 5<sup>th</sup> hybrid (APS45 x APS12) under pooled spring season.

The Coefficient of correlation (C.C) are calculated on the basis of pearson's coefficient of correlation and the significance of the C.C between the various characteristics are based on t-test (Two tailed). Again the **N.H.** is considered as

Ho:  $\rho=0$ , i.e. the correlation coefficient is not significant.

From, the calculation of C.C and on the basis of the calculated value of ItI, the following table indicates the levels of significance of C.C between various qualitative characteristics as

| level | 1   | 2  | 3       | 4       | 5  | 6  | 7  | 8       |
|-------|-----|----|---------|---------|----|----|----|---------|
| 1     | · · | NS | NS      | NS      | NS | NS | NS | NS      |
| 2     | NS  |    | NS      | NS      | NS | NS | NS | NS      |
| 3     | NS  | NS |         | Sig(**) | NS | NS | NS | Sig(**) |
| 4     | NS  | NS | Sig(**) |         | NS | NS | NS | Sig(**) |
| 5     | NS  | NS | NS      | NS      | ·  | NS | NS | NS      |
| 6     | NS  | NS | NS      | NS      | NS |    | NS | NS      |
| 7     | NS  | NS | NS      | NS      | NS | NS |    | NS      |
| 8     | NS  | NS | Sig(**) | Sig(**) | NS | NS | NS |         |

NS: Not significant.

Sig(\*\*): Highly significant (both are .05 & .01 levels).

From the above results it is observed that

C.C between the following characteristics are

Highly significant. (both at .05 & .01 levels)

- (i) Between effective rate of rearing by number & Effective rate of rearing by weight.
- (ii) Between effective rate of rearing by number & yield
- (iii) Between effective rate of rearing by weight & yield.

#### Correlations

Simple correlation co-efficients between fecundity and other qualitative traits of 6th hybrid (CSR46x CSR47)(pooled spring) Table 3.2.21

|           |                        | fecun | hatching | errbyno | errbywt | sgcocnwt | sgshlwt | SR                          | yield   |
|-----------|------------------------|-------|----------|---------|---------|----------|---------|-----------------------------|---------|
|           | 14                     | dity  |          | 19 M    |         |          | -       |                             |         |
|           | Pearson<br>Correlation | 1     | 736      | .899*   | .267    | 391      | 760     | 145                         | .267    |
| Fecundity | Sig. (2-tailed)        |       | .156     | .038    | .664    | .516     | .136    | .816                        | .664    |
|           | Ν                      | 5     | 5        | 5       | 5       | 5        | 5       | 5                           | 5       |
|           | Pearson<br>Correlation | 736   | 1        | 834     | 141     | .527     | .961**  | .055                        | 141     |
| Hatching  | Sig. (2-tailed)        | .156  |          | .079    | .821    | .362     | .009    | .929                        | .821    |
|           | Ν                      | 5     | 5        | 5       | 5       | 5        | 5       | 5                           | 5       |
| Embuno    | Pearson<br>Correlation | .899* | 834      | 1       | .152    | 545      | 840     | .044                        | .152    |
| EIIUyiiu  | Sig. (2-tailed)        | .038  | .079     |         | .808    | .342     | .075    | .944                        | .808    |
|           | N                      | 5     | 5        | 5       | 5       | 5        | 5       | 5                           | 5       |
| Errbywt   | Pearson<br>Correlation | .267  | 141      | .152    | 1       | .731     | .098    | -<br>.961 <sup>*</sup>      | 1.000** |
|           | Sig. (2-tailed)        | .664  | .821     | .808    | 2       | .160     | .875    | .009                        | .000    |
| 1         | N                      | 5     | 5        | 5       | 5       | 5        | 5       | 5                           | 5       |
|           | Pearson<br>Correlation | 391   | .527     | 545     | .731    | 1        | .723    | 804                         | .731    |
| Sgcocnwt  | Sig. (2-tailed)        | .516  | .362     | .342    | .160    |          | .168    | .101                        | .160    |
|           | Ν                      | 5     | 5        | 5       | 5       | 5        | 5       | 5                           | 5       |
| Sachlut   | Pearson<br>Correlation | 760   | .961**   | 840     | .098    | .723     | 1       | 177                         | .098    |
| Sgsniwt   | Sig. (2-tailed)        | .136  | .009     | .075    | .875    | .168     |         | .776                        | .875    |
|           | N                      | 5     | 5        | 5       | 5       | 5        | 5       | 5                           | 5       |
| SD        | Pearson<br>Correlation | 145   | .055     | .044    | 961**   | 804      | 177     | 1                           | 961**   |
| SK        | Sig. (2-tailed)        | .816  | .929     | .944    | .009    | .101     | .776    |                             | .009    |
|           | N                      | 5     | 5        | 5       | 5       | 5        | 5       | 5                           | 5       |
| Yield     | Pearson<br>Correlation | .267  | 141      | .152    | 1.000** | .731     | .098    | -<br>.961 <sup>*</sup><br>* | 1       |
| а<br>1    | Sig. (2-tailed)        | .664  | .821     | .808    | .000    | .160     | .875    | .009                        |         |
|           | Ν                      | 5     | 5        | 5       | 5       | 5        | 5       | 5                           | 5       |

#### Correlations

\*. Correlation is significant at the 0.05 level (2-tailed).

\*\*. Correlation is significant at the 0.01 level (2-tailed).

**Conclusion :** Correlation of coefficient between various qualitative traits of **Six hybrid** under pooled spring season.

The coefficient of correlation (C.C) are calculated on the basis of Pearson's coefficient of correlation and the significance of the C.C between the various characteristics are based on t-test (Two tailed). Again the Null Hypothesis (N.H). is considered as

Ho :  $\rho=O$ , i.e. the correlation coefficient is not significant.

From, the calculation of C.C and on the basis of the calculated value of ItI, the following table indicate the levels of significance of C.C between various qualitative characteristics as

|   | 1      | 2  | 3      | 4       | 5  | 6       | 7       | 8       |
|---|--------|----|--------|---------|----|---------|---------|---------|
| 1 |        | NS | Sig(*) | NS      | NS | NS      | NS      | NS      |
| 2 | NS     |    | NS     | NS      | NS | Sig(**) | NS      | NS      |
| 3 | Sig(*) | NS |        | NS      | NS | NS      | NS      | NS      |
| 4 | NS     | NS | NS     |         | NS | NS      | Sig(**) | Sig(**) |
| 5 | NS     | NS | NS     | NS      |    | NS      | NS      | NS      |
| 6 | NS     | NS | NS     | NS      | NS |         | NS      | NS      |
| 7 | NS     | NS | NS     | Sig(**) | NS | NS      |         | Sig(**) |
| 8 | NS     | NS | NS     | NS      | NS | NS      | NS      |         |

NS : Not significant

Sig(\*) : Significant at 0.5 level

Sig(\*\*) : Highly significant (both at .05 and .01 levels).

Thus from the above results it is observed that

- (a) C.C between the following characteristic are significant (.05 level)
  - (i) Between fecundity and effective rate of rearing by number and
  - (ii) C.C between the following characteristics are highly significant (both at .05 and .01 levels).
  - (i) Between hatching and single shell weight.
  - (ii) Between effective rate of rearing by weight and SR
  - (iii) Between effective rate of rearing by weight and yield.
  - (iv) Between SR and yield.