Exam ID Number \qquad
Course \qquad Semester \qquad
Paper Code \qquad Paper Title \qquad
Type of Exam: \qquad (Regular/Back/Improvement)

Important Instruction for students:

1. Student should write objective and descriptive answer on plain white paper.
2. Give page number in each page starting from $1^{\text {st }}$ page.
3. After completion of examination, Scan all pages, convert into a single PDF, rename the file with Class Roll No. (2019MBA15) and upload to the Google classroom as attachment.
4. Exam timing from $10 \mathrm{am}-1 \mathrm{pm}$ (for morning shift).
5. Question Paper will be uploaded before 10 mins from the schedule time.
6. Additional 20 mins time will be given for scanning and uploading the single PDF file.
7. Student will be marked as ABSENT if failed to upload the PDF answer script due to any reason.

M.Sc. MATHEMATICS
 THIRD SEMESTER
 MATHEMATICAL METHODS
 MSM-303

Duration : 3 hrs.
Full Marks : 70

(PART-A: Objective

Time: $\mathbf{2 0} \mathbf{m i n}$.
Marks : 20
Choose the correct answer from the following:
$1 \times 20=20$

1. $L^{-1}\left\{\frac{1}{s^{n+1}}\right\}$ is:
a. t^{n+1}
$\overline{n!}$
b. $\frac{t^{n-1}}{n!}$
c. $\frac{t^{n-1}}{(n+1)!}$
d. None
2. The values of $L\left\{t^{n+1}\right\}$ is:
a. $\frac{n!}{S^{n}}$
b. $\frac{(n+1)}{S^{n+1}}$
c. $\frac{t^{n-1}}{n!}$
d. None
3. The value of $L\{-1\}$ is:
a. 0
b. -1
c. $-\frac{1}{S}$
d. None
4. Boundary value problems in the theory of ordinary differential equation can lead to integral equations of the type:
a. Volterra
b. Fredholm
c. Mellin
d. Laplace
5. If the upper limit of the integral equation is not a constant then the equation is of the type:
a. Volterra
b. Fredholm
c. Hankel
d. Holbert
6. $L\left(e^{a t} t^{n}\right)$ is:
a. $\frac{n!}{(S-a)^{n+1}}$
c. Both a and b
b.

$$
\frac{n!}{(S-a)^{n}}
$$

d. None of the above
7. Linear integral equation of the form,
$\phi(x)=f(x)+\lambda \int_{a}^{b} k(x, \xi) \phi(\xi) d \xi$ is known as Fredholm integral equation of:
a. $1^{\text {st }}$ kind
b. $2^{\text {nd }}$ kind
c. $3^{\text {rd }}$ kind
d. None
8. A linear integral equation of the form, $y(x)=\lambda \int_{a}^{b} k(x, t) y(t) d t$ is called homogeneous Volterra integral equation of:
a. $1^{\text {st }}$ kind
b. $2^{\text {nd }}$ kind
c. 3 rd kind
d. All of the above
9. Formula to convert multiple integral $\int_{a}^{x} y(t) d t^{n}$ into a single ordinary integral is:
a. $\int_{a}^{x} \frac{(x-t)^{n}}{n!} y(t) d t$
b. $\int_{a}^{x} \frac{(x-t)^{n-1}}{(n-1)!} d t$
c. $\int_{a}^{x} \frac{(x-t)^{n}}{n!} d t$
d. None
10. Find $L\left(t^{1 / 2}\right)$
a. $\frac{\sqrt{\pi}}{S^{3 / 2}}$
b. $\frac{\sqrt{\pi}}{4 S^{5 / 2}}$
c. $S^{3 / 2}$
d. None
11. $L(F(t))=f(S)$ then $\left.L\left(e^{a t} F(t)\right)\right)=f(S-a)$ is called:
a. $1^{\text {st }}$ shifting theorem
b. $2^{\text {nd }}$ shifting theorem
c. Both a and b
d. None
12. Inverse Laplace transform of $\frac{1}{\sqrt{S}}$ is:
a. $t^{1 / 2^{-1}}$ $\Gamma(1 / 2)$
b.

c. Both a and b
d. None
13. Fourier transform is defined on:
a. $(-\infty, \infty)$
b. $(-\infty, 0)$
c. $(0, \infty)$
d. $[0, \infty)$
14. Which of the following can't be a kernel of cosine transformation?
a. $\operatorname{Sin} \operatorname{sx}$
b. $e^{-i s x}$
c. $e^{s x}$
d. All of the above
15. If $F(S)$ is the Fourier transformation of $F(x)$ then Fourier transformation of $F(k x)$ is:
a. $\frac{1}{k} F\left(\frac{S}{k}\right)$
b. $F\left(\frac{S}{k}\right)$
c. $F(k s)$
d. $F(s x)$
16. $L(0)$:
a. 0
b. 1
c. Undefined
d. None
17. Which can't be the eigen value of the equation,
$y(x)=\lambda \int_{a}^{b} k(x, t) y(t) d t$
a. $\lambda=0$
b. $\lambda=1$
c. $\lambda=2$
d. None
18.
$L\left(\frac{1}{(s-2)^{2}}\right)=.$.
a. e^{t}
b. $t e^{t}$
c. $e^{2 t}$
d. None
19. If $L^{-1}\left(\frac{a}{(s+b)^{2}-a^{2}}\right)=$,
a. $e^{b t}$ Sinhat
b. $e^{-b t}$ Sinhat
c. $e^{b t} \operatorname{Sinh} b t$
d. None
20. $L^{-1}\left(\frac{1}{S^{n+1}}\right)=\frac{t^{n}}{\Gamma(n+1)}$ then:
a. $n \geq-1$
b. $n>-1$
c. n is rational
d. n is positive rational

(PART-B: Descriptive)

Time : 2 hrs. 40 min .
Marks : 50

[Answer question no. 1 \& any four (4) from the rest]

1. a. Form an integral equation corresponding to the differential equation,

$$
y^{\prime \prime \prime}-2 x y=0
$$

with initial conditions, $y(0)=\frac{1}{2}, y^{\prime}(0)=y^{\prime \prime}(0)=1$.
b. Find the eigen values and corresponding eigen function of the integral equation
$y(x)=\lambda \int_{0}^{1}(6 x-t) y(t) d t$
2. a. Show that the linear differential equation of $2^{\text {nd }}$ order

$$
\frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{2}(x) y=F(x)
$$

with initial conditions $y(0)=c_{0}, y^{\prime}(0)=c_{1}$ can be transformed into non-homogeneous Volterra equation of $2^{\text {nd }}$ kind.
b. Find $L^{-1}\left\{\frac{S}{\left(S^{2}-1\right)^{2}}\right\}$
3. a. Find Fourier transformation of $F(x)$ defined by,

$$
F(x)= \begin{cases}1, & |x|<a \\ 0, & |x|>a\end{cases}
$$

And hence evaluate,
(i) $\int_{-\infty}^{\infty} \frac{\operatorname{Sinax} \operatorname{Cos} S x}{S} d x$
(ii) $\int_{0}^{\infty} \frac{\operatorname{Sin} S}{S} d S$
b. Apply convolution theorem to find,

$$
L^{-1}\left\{\frac{S^{2}}{\left(S^{2}+a^{2}\right)\left(S^{2}+b^{2}\right)}\right\}
$$

4. a. Find Fourier Sine and Cosine transformation of $f(x)$ if,
$f(x)=\left\{\begin{array}{lc}x, & 0<x<1 \\ 2-x, & 1<x<2 \\ 0, & x>2\end{array}\right.$
b. $L^{-1}\left\{\frac{S}{S(S+1)^{3}}\right\}$
5. a. Show that $y(x)=\cos 2 x$ is a solution of the integral equation

$$
V(x)=\cos x+3 \int_{0}^{\pi} k(x, t) y(t) d t
$$

Where $k(x, t)= \begin{cases}\sin x \cos t & 0 \leq x \leq t \\ \cos x \sin t & t \leq x \leq \pi\end{cases}$
b. Evaluate $L\left\{t^{2} e^{2 t} \operatorname{Sin} 3 t\right\}$
6. a. Using Laplace transformation solve the following differential equation,

$$
\frac{d^{3} x}{d t^{3}}-3 \frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}-x=t^{2} e^{t}, x(0)=1, x^{\prime}(0)=0
$$

b. Find Laplace transformation of:
(i) Coshat Sinhat
(ii) $\operatorname{Cos}^{3} 3 t$
7. a. What is the integral equation of Convolution type?
b. What is the Leibnit'z rule of differentiation under integral sign?
c. What is the homogeneous integral equation of $2^{\text {nd }}$ kind?
d. Write Volterra equation of $2^{\text {nd }}$ kind.
e. Write a note on Mellin and Hankel transformation.
8. a. Transform the boundary value problem

$$
\frac{d^{2} y}{d x^{2}}+y=x, \quad y(0)=0, y^{\prime}(1)=0
$$

To Fradholm integral equation

$$
\begin{gathered}
y(x)=\frac{1}{6}\left(x^{3}-3 x\right)+\int_{0}^{1} K(x, t) y(t) d t \text { where } \\
y(x)=\left\{\begin{array}{cc}
x & , x<1 \\
t & , x>1
\end{array}\right. \\
5
\end{gathered}
$$

b. Solve the following homogeneous integral equation:

$$
y(x)=\frac{1}{e^{2}-1} \int_{0}^{1} 2 e^{x} e^{t} y(t) d t
$$

$$
==* * *==
$$

