ODD SEMESTER EXAMINATION: 2020-21

Exam ID Number		
Course	Semester	
Paper Code	Paper Title	
Type of Exam:	(Regular/Back/Improvement)	

Important Instruction for students:

- 1. Student should write objective and descriptive answer on plain white paper.
- 2. Give page number in each page starting from 1st page.
- 3. After completion of examination, Scan all pages, convert into a single PDF, rename the file with Class Roll No. **(2019MBA15)** and upload to the Google classroom as attachment.
- 4. Exam timing from 10am 1pm (for morning shift).
- 5. Question Paper will be uploaded before 10 mins from the schedule time.
- 6. Additional 20 mins time will be given for scanning and uploading the single PDF file.
- 7. Student will be marked as ABSENT if failed to upload the PDF answer script due to any reason.

M.Sc. MATHEMATICS THIRD SEMESTER MATHEMATICAL METHODS MSM-303

Duration: 3 hrs.

Full Marks: 70

Marks : 20 1X20=20

Time : 20 min.

6.

(<u>PART-A:Objective</u>)

Choose the correct answer from the following:

1. $L^{-1}\left\{\frac{1}{s^{n+1}}\right\}$ is: a. t^{n+1} b. t^{n-1} c. t^{n-1} (n+1)! c. t^{n-1} d. None d. None c. t^{n-1} is: a. n! s^{n} b. t^{n-1} n! c. t^{n-1} (n+1) b. t^{n-1} n! c. t^{n-1} (n+1) (

c. $\frac{S^n}{n!}$ d. None d.

3. The value of $L\{-1\}$ is: **a.** 0 **b.** -1 **d.** None **b.** -1 **d.** None

4. Boundary value problems in the theory of ordinary differential equation can lead to integral equations of the type:

a. Volterra	b. Fredholm
c. Mellin	d. Laplace

5. If the upper limit of the integral equation is not a constant then the equation is of the type:

 a. Volterra
 b. Fredholm
 c. Hankel
 d. Holbert

$$L(e^{at}t^{n})$$
 is:
a. $n!$
b. $n!$
c. Both a and b
b. $n!$
c. Both a and b
c. Both a and b

7. Linear integral equation of the form,

 $\phi(x) = f(x) + \lambda \int_{a}^{b} k(x,\xi) \phi(\xi) d\xi$ is known as Fredholm integral equation of: **a.** 1st kind **b.** 2nd kind **c.** 3rd kind **d.** None

8. A linear integral equation of the form, b

$$y(x) = \lambda \int_{a}^{b} k(x,t) y(t) dt$$
 is called homogeneous Volterra integral equation of:
a. 1st kind
b. 2nd kind
c. 3rd kind
d. All of the above

9. Formula to convert multiple integral

$\int_{a}^{x} y(t) dt^{n}$ into a single ordinary integral is:	
a. $\int_{a}^{x} \frac{(x-t)^{n}}{n!} y(t) dt$	b. $\int_{a}^{x} \frac{(x-t)^{n-1}}{(n-1)!} dt$
c. $\int_{a}^{x} \frac{(x-t)^{n}}{n!} dt$	d. None
10. Find $L(t^{\frac{1}{2}})$	
a. $\frac{\sqrt{\pi}}{\sqrt{2}}$	b. $\sqrt{\pi}$
S ^{3/2}	$4S^{\frac{3}{2}}$
c. $S^{\frac{3}{2}}$	d. None
11. $L(F(t)) = f(S)$ then $L(e^{at}F(t)) = f(S)$	(5-a) is called:
a. 1 st shifting theorem	b. 2 nd shifting theorem
c. Both a and b	d. None
12. Inverse Laplace transform of $\frac{1}{\sqrt{S}}$ is:	
a. $t^{\frac{1}{2}-1}$	b. $t^{\frac{1}{2}}$
$\overline{\Gamma(\frac{1}{2})}$	$\overline{\Gamma(\frac{1}{2})}$
c. Both a and b	d. None

13. Fourier transform is defined on:

a.
$$(-\infty,\infty)$$
b. $(-\infty,0)$ c. $(0,\infty)$ d. $[0,\infty)$

14. Which of the following can't be a kernel of cosine transformation?

a. Sin sxb.
$$e^{-isx}$$
c. e^{sx} d. All of the above

15. If F(S) is the Fourier transformation of F(x) then Fourier transformation of F(kx) is:

a.
$$\frac{1}{k}F\left(\frac{S}{k}\right)$$

b. $F\left(\frac{S}{k}\right)$
c. $F(ks)$
d. $F(sx)$

16. L(0):

17. Which can't be the eigen value of the equation,

$$y(x) = \lambda \int_{a}^{b} k(x,t) y(t) dt$$

a. $\lambda = 0$
b. $\lambda = 1$
c. $\lambda = 2$
d. None

18.
$$L(\frac{1}{(s-2)^2}) = ..$$

a. e^t
b. te^t
c. e^{2t}
d. None

19. If
$$L^{-1}(\frac{a}{(s+b)^2 - a^2}) =$$
,
a. $e^{bt}Sinhat$
c. $e^{bt}Sinhbt$

20.
$$L^{-1}\left(\frac{1}{S^{n+1}}\right) = \frac{t^n}{\Gamma(n+1)}$$
 then:
a. $n \ge -1$
c. n is rational

b. e^{-bt} *Sinhat* **d.** None

b. n > -1**d.** n is positive rational

(<u>PART-B : Descriptive</u>)

Time: 2 hrs. 40 min.

[Answer question no.1 & any four (4) from the rest]

1. a. Form an integral equation corresponding to the differential equation, 6+4=10

$$y''' - 2xy = 0$$

with initial conditions, $y(0) = \frac{1}{2}$, y'(0) = y''(0) = 1.

b. Find the eigen values and corresponding eigen function of the integral equation

$$y(x) = \lambda \int_{0}^{1} (6x - t) y(t) dt$$

2. a. Show that the linear differential equation of 2^{nd} order 6+4=10

$$\frac{d^2 y}{dx^2} + a_1(x)\frac{dy}{dx} + a_2(x)y = F(x)$$

with initial conditions $y(0) = c_0$, $y'(0) = c_1$ can be transformed into non-homogeneous Volterra equation of 2nd kind.

b. Find
$$L^{-1}\left\{\frac{S}{(S^2-1)^2}\right\}$$

3. a. Find Fourier transformation of F(x) defined by,

$$F(x) = \begin{cases} 1, & |x| < a \\ 0, & |x| > a \end{cases}$$

And hence evaluate,

(i)
$$\int_{-\infty}^{\infty} \frac{Sinax CosSx}{S} dx$$

(ii)
$$\int_{0}^{\infty} \frac{SinS}{S} dS$$

b. Apply convolution theorem to find,

$$L^{-1}\left\{\frac{S^{2}}{(S^{2}+a^{2})(S^{2}+b^{2})}\right\}$$

6+4=10

Marks: 50

4. a. Find Fourier Sine and Cosine transformation of f(x) if,

$$f(x) = \begin{cases} x, & 0 < x < 1\\ 2 - x, & 1 < x < 2\\ 0, & x > 2 \end{cases}$$

b. $L^{-1} \left\{ \frac{S}{S(S+1)^3} \right\}$

5. a. Show that $y(x) = \cos 2x$ is a solution of the integral equation 6+4=10

$$V(x) = \cos x + 3 \int_{0}^{\pi} k(x,t) y(t) dt$$

Where $k(x,t) = \begin{cases} \sin x \cos t & 0 \le x \le t \\ \cos x \sin t & t \le x \le \pi \end{cases}$
b. Evaluate $L \{ t^{2} e^{2t} Sin 3t \}$

6. a. Using Laplace transformation solve the following differential 6+4=10 equation,

$$\frac{d^3x}{dt^3} - 3\frac{d^2x}{dt^2} + 3\frac{dx}{dt} - x = t^2e^t, x(0) = 1, x'(0) = 0$$

b. Find Laplace transformation of:

(i) Coshat Sinhat

7. **a.** What is the integral equation of Convolution type? 1+1+1+1+6=10

b. What is the Leibnit'z rule of differentiation under integral sign?

- c. What is the homogeneous integral equation of 2nd kind?
- d. Write Volterra equation of 2nd kind.
- e. Write a note on Mellin and Hankel transformation.
- 8. a. Transform the boundary value problem

$$\frac{d^2 y}{dx^2} + y = x, \quad y(0) = 0, \ y'(1) = 0$$

To Fradholm integral equation

$$y(x) = \frac{1}{6}(x^3 - 3x) + \int_0^1 K(x,t)y(t)dt \text{ where}$$
$$y(x) = \begin{cases} x & , \ x < 1 \\ t & , \ x > 1 \end{cases}$$

USTM/COE/R-01

6+4=10

6+4=10

b. Solve the following homogeneous integral equation:

$$y(x) = \frac{1}{e^2 - 1} \int_0^1 2e^x e^t y(t) dt$$

= = *** = =