Write the following information in the first page of Answer Script before starting answer

ODD SEMESTER EXAMINATION: 2020-21

Exam ID Number	
Course	Semester
Paper Code	Paper Title
Type of Exam:	(Regular/Back/Improvement)

Important Instruction for students:

- 1. Student should write objective and descriptive answer on plain white paper.
- 2. Give page number in each page starting from 1st page.
- 3. After completion of examination, Scan all pages, convert into a single PDF, rename the file with Class Roll No. **(2019MBA15)** and upload to the Google classroom as attachment.
- 4. Exam timing from 10am 1pm (for morning shift).
- 5. Question Paper will be uploaded before 10 mins from the schedule time.
- 6. Additional 20 mins time will be given for scanning and uploading the single PDF file.
- 7. Student will be marked as ABSENT if failed to upload the PDF answer script due to any reason.

M.Sc. CHEMISTRY THIRD SEMESTER INORGANIC CHEMISTRY-III MSC-301

Duration: 3 hrs.

Time : 20 min.

Full Marks: 70

(<u>PART-A: Objective</u>)

Choose the correct answer from the following:

1.	 Reactions of benzene are mainly electrophilic substitution, but as a coordinate undergoes: 			
	a. Free radical reactionc. Redox reactions	b. Nucleophilic substitutiond. None of the above		
2.	The reactivity of ferrocene ring is similar to t a. Benzene c. Reactive thiophene & phenol	hat of: b. Naphathalene d. None of the above		
3.	The stronger M-C bond:a. Increases tendency of CO to leave the metal ionc. Decreases the tendency of CO to leave the metal ion	b. Neither increases nor decreases the tendency to leave the metal iond. None of the above		
4.	The associatively activated substation even is feasible because: a. Linear NO ligand switches to angular NO c. It becomes 20 electron complex	n 18 electron complexes with NO ligand is b. Angular NO ligand switches to linear NO d. None of the above		
5.	1,2 Insertion reaction:a. Takes place with change in oxidation number of the metalc. Is migratory insertion	b. Is reverse of beta-hydride elimination reactiond. None of the above		
6.	The rate of CO substitution of 6-coordinate main a. Increases as more strongly basic ligands replace COc. Decrease as more strongly basic ligands replace CO	netal carbonyls often: b. Remain unchanged as more strongly basic ligands replace CO d. None of the above		
7.	The compound which does not obey 18-elect a. Fe(CO) ₅ c. Cr(CO) ₆	ron rule is: b. Ni(CO) ₄ d. W(CH ₃) ₆		
8.	The Carbonyl stretching of the compounds a and Fe(CO) ₄ ²⁻ (1790 cm ⁻¹). The decrease of str a. Increase of back bonding c. Increase of negative charge	re Ni(CO) ₄ (2060 cm ¹⁻), Co(CO) ₄ - (1890cm ¹⁻) retching frequency is because of: b. Decrease of back bonding d. Increase effective nuclear charge		

Marks:20

1X20=20

9.	The ethylene molecule in $[Fe(CO)_4(C_2H_4)]$ and $K[PtCl_3(C_2H_4)]$ are respectively				
	a. Perpendicular and in Plane c. In Plane and Perpendicular	 b. Perpendicular and Perpendicular d. In plane and in plane 			
10.	In the Syndiotactic polypropylene polymers a. On the same side of the polymer chain c. At random side of the polymer chain	the methyl groups are:b. On alternate side of the polymer chain.d. None of the above			
11.	The Compound Cp_2MoH_2 and Cp_2ZrH_2 are n a . n- acid and n-base c . n-acid and n-acid	respectively: b.п-base and п-base d.п- base and п-acid			
12.	The ¹ HNMR spectra of the compound $(\eta^5-C_5H_5)(\eta^1-C_5H_5)$ Fe(CO) ₂ at room temperative shows only:				
	a. One proton resonance c. Five Proton resonance	b. Two proton resonance d. Multiple proton resonance			
13.	. When rearrangement between two or more chemically equivalent configuration				
	a. Isomerization c. Fluxional	b. Tautomerization d. Stereo-isomerization			
14.	The oxidation state of the Mn-atom in the epoxidation of Alkene by the Mn-Salen catalyst in Jacobsen oxidation is:				
	c. Mn(III)	d. Mn(V)			
15.	The complex with spin only magnetic mome a. $[Fe(H_2O)_6]^{2+}$ c. $[Fe(CN)_6]^{4-}$	nt of 4.9BM: b. [Fe(CN) ₆] ³⁻ d. [Fe(H ₂ O) ₆] ³⁺			
16.	Electron transfer from $[Fe(H_2O)_6]^{2+}$ to $[Fe(H_2O)_6]^{2+}$ t	O) ₆] ³⁺ is likely to occur via: b. Inner sphere electron transfer d. Outer sphere mechanism			
17.	Reduction of $[CoCl(NH_3)_5]^{2+}$ by $[Cr(H_2O)_6]^{2+}$ a. Inner sphere mechanism c. Both (a) and (b)	is via: b. Quarter sphere mechanism d. None of these			
18.	Lability of ions Cr ²⁺ , Mn ²⁺ and V ²⁺ should fol a. Cr ²⁺ > Mn ²⁺ >V ²⁺ c. Cr ²⁺ > V ²⁺ >Mn ²⁺	llow the order: b. Mn ²⁺ >V ²⁺ >Cr ²⁺ d. V ²⁺ >Cr ²⁺ > Mn ²⁺			
19.	 The most suitable route to prepare the trans i a. [PtCl₄]²⁻ with PPh₃ followed by reaction with NH₃ c. [Pt(NH₃)₄]²⁺ with HCl followed by reaction with PPh₃ 	 somer of [PtCl₂(NH₃)PPh₃]: b. [PtCl₄]²⁻ with NH₃ followed by reaction with PPh₃ d. [Pt(NH₃)₄]²⁺ with PPh₃ followed by reaction with HCl 			
20.	The most acidic aqua ion is: a. $[Fe(H_2O)_6]^{3+}$ c. $[Co(H_2O)_6]^{3+}$	b. [Ti(H ₂ O) ₆] ³⁺ d. [Cr(H ₂ O) ₆] ³⁺			

(<u>PART-B : Descriptive</u>)

Time: 2 hrs. 40 min.

Time : 2 hrs. 40 min.					
	[Answer question no.1 & any four (4) from the rest]				
1.	a. Write an explanatory note on Migratory Insertion reaction of Collman reagent [tetracarbonyl ferrate (II)] in presence of triphenyl phosphine.	3			
	b. Give a brief account of carbonylate anion as nucleophile.	2			
	c. Give an explanatory note on alkene metathesis.	3			
_	u. What is Grubb's Catalyst: Mention its function.	2			
2.	a. What is Tolman Cone Angle? How does it influence dissociative	1+2=3			
	b. What is oxidative addition? How does it differ from reductive elimination?	2+2=4			
	c. Give a brief account of beta-hydride elimination.	3			
3.	Discuss the preparation and structure of Zeise's salt. Explain how the substitution in the alkene affects the C-C bond distance and the bond angle of coordinated alkene?	10			
4.	Explain the preparation and structure and bonding of Ferrocene.	10			
5.	Discuss in details Monsanto process of production of Acetic acid from methanol.	10			
6.	a. Explain the two theories of trans effect.b. Discuss about two electron transfer reactions.	5×2=10			
7.	a. Explain the acid hydrolysis mechanism of octahedral complexes.b. Discuss the mechanism of base hydrolysis reaction.	5×2=10			
8.	a. Explain about overall and stepwise stability constant. What are the factors affecting stability constant?	5×2=10			
	b. What is Irving Williams series? Discuss with examples of inert and labile complexes.				

= = *** = =