ODD SEMESTER EXAMINATION: 2020-21

Exam ID Number	
Course	Semester
Paper Code	Paper Title
Type of Exam:	(Regular/Back/Improvement)

Important Instruction for students:

- 1. Student should write objective and descriptive answer on plain white paper.
- 2. Give page number in each page starting from 1st page.
- 3. After completion of examination, Scan all pages, convert into a single PDF, rename the file with Class Roll No. **(2019MBA15)** and upload to the Google classroom as attachment.
- 4. Exam timing from 10am 1pm (for morning shift).
- 5. Question Paper will be uploaded before 10 mins from the schedule time.
- 6. Additional 20 mins time will be given for scanning and uploading the single PDF file.
- 7. Student will be marked as ABSENT if failed to upload the PDF answer script due to any reason.

B.Sc. PHYSICS/ B.Sc. CHEMISTRY THIRD SEMESTER VECTOR ANALYSIS **BSM-732**

Duration: 1.30 hrs.

[<u>PART-A: Objective</u>]

Time: 10 min.

Choose the correct answer from the following:

1. If two vectors \overrightarrow{a} and \overrightarrow{b} are perpendicular to each other, then: $\vec{a} \cdot \vec{b} \neq 0$ **b.** \rightarrow \rightarrow a. $a \cdot b = 0$ **d.** $\overrightarrow{a} \cdot \overrightarrow{b} = ab \overrightarrow{or} \overrightarrow{a} \cdot \overrightarrow{b} = -ab$ c. $\overrightarrow{a} = 0, \overrightarrow{b} \neq 0$ ^{2.} If A and B are the points (1,-2,4) and (2,4,1) respectively, then AB = ?a. $\hat{i} + 6\hat{j} - 3\hat{k}$ **b.** $\hat{i} + 4\hat{i} + 3\hat{k}$ c. $\hat{i} - 4\hat{i} + 3\hat{k}$ **d.** $\hat{i} + 4\hat{i} - 4\hat{k}$ ^{3.} What is the value of $\overline{a} \times (\overline{b} \times \overline{c}) = ?$ a. $(\overline{a}.\overline{b})\overline{c} - (\overline{a}.\overline{c})\overline{b}$ **b.** $(\overline{a}.\overline{c})\overline{b} - (\overline{a}.\overline{b})\overline{c}$ c. $(\overline{a},\overline{c})\overline{b} + (\overline{a},\overline{b})\overline{c}$ d. $(\overline{a},\overline{c})\overline{b} - (\overline{a},\overline{b})\overline{c}$ **4.** What is the value of $\hat{i} \cdot (\hat{i} \times \hat{j}) = ?$ **a.** -1 **b**. 1 **c.** 0 **d.** None of the above 5. If the following vectors are coplanar $\overline{a} = \hat{i} - \hat{j} + \hat{k}, \overline{b} = 2\hat{i} + \hat{j} - \hat{k}, \overline{c} = x\hat{i} + \hat{j} + x\hat{k}$, then the value of xis: **a.** 2 **b.** 1 **c.** 0 **d.** -1 6. Which of the following is correct? **b.** $\begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{a} & \overline{c} & \overline{b} \end{bmatrix}$ **a.** $\begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} = -\begin{bmatrix} \overline{a} & \overline{c} & \overline{b} \end{bmatrix}$ d. $\begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} = \overline{a} \times (\overline{b} \times \overline{c})$ $\mathbf{c} \cdot \begin{bmatrix} \overline{a} & \overline{c} & \overline{b} \end{bmatrix} = -\begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$ 7. What is the value of $\hat{i} \times \hat{i} = ?$ **b.** 0

a. 1

c. -1

d. None of the above

USTM/COE/R-01

Full Marks: 35

Marks:10

1X10=10

- 8. The term $\overline{a}.(\overline{b} \times \overline{c})$ represents:
 - **a.** Geometrically the volume V of a rectangle with the three vectors as the coterminous edges
 - **c.** Geometrically the volume V of a parallelepiped with the three vectors as the coterminous edges
- 9. What is value of $\overline{a} \times \{\overline{a} \times (\overline{b} \times \overline{c})\} = ?$ a. $(\overline{b} \times \overline{a})$ c. $(\overline{b} \times \overline{a})a$
- 10. $a \times (b + c) + b \times (c + a) + c \times (a + b) = ?$ a. 1 c. -1

- **b.** Geometrically the volume V of a square with the three vectors as the coterminous edges
- **d.** Geometrically the volume V of a parallelogram with the three vectors as the coterminous edges

^{b.}
$$(\overline{a}.a)$$

^{d.} $(\overline{a}.a)(\overline{b} \times \overline{a})$

b. 0 **d.** None of the above

(<u>PART-B : Descriptive</u>)

Time : 1 hr. 20 mins.		Marks: 25
[Answer question no.1 & any four (4) from the rest]		
1.	Write the difference between scalar triple product and vector triple	1+4=5
	product. Prove that the following vectors are non-coplanar, if a_{μ}	
	$\vec{b}_{and} \vec{c}_{be}$ non zero and non co planar vectors, $\vec{p} = 2\vec{a} - \vec{b} + 3\vec{c}_{, q} \vec{q} = \vec{a} + \vec{b} - 2\vec{c}_{, r} \vec{p} = \vec{a} + \vec{b} - 2\vec{c}$	
2.	What do you mean by continuity and differentiability of a vector? If $R(u) = x(u)i + y(u)j + z(u)k$, where x, y, z are differentiable functions cof a scalar u, Prove that	1+4=5
	$\frac{dR}{du} = \frac{dx}{du}i + \frac{dy}{du}j + \frac{dz}{du}k$	
3.	Given $R = \sin t i + \cos t j + t k$, find (a) $\frac{dR}{dt}$ (b) $\frac{d^2R}{dt^2}$ (c) $\left \frac{dR}{dt}\right $ (d)	1+4=5
	$\left \frac{d^2 R}{dt^2} \right $? What is space curve?	
4.	Find the value of: If $a\hat{i} + 2\hat{j} = 3\hat{i} + 2\hat{j} - b\hat{k}$, find a, b	2+3=5
	$(ii) (2\hat{i}-3\hat{j})\times\hat{i} $	
5.	Write the definition of Gradient, Curl and Divergence of a vector? If $\phi(x, y, z) = 3x^2y - y^3z^2$ $\nabla \phi$ ϕ , find (or grad) at the	3+2=5
	(1,-2,-1)	
6.	point $O(P O) P (O O O (O P))$	2+3=5
0.	Solve: $\overset{\rho}{a} \times (\overset{\rho}{b} + \overset{\rho}{c}) + \overset{\rho}{b} \times (\overset{\rho}{c} + \overset{\rho}{a}) + \overset{\rho}{c} \times (\overset{\rho}{a} + \overset{\rho}{b}) = 0$	2:0-0

(a) $\int R(u)du \int_{1}^{2} R(u)du = = *** = =$

USTM/COE/R-01