Exam ID Number \qquad
Course \qquad Semester \qquad
Paper Code \qquad Paper Title \qquad
Type of Exam: \qquad (Regular/Back/Improvement)

Important Instruction for students:

1. Student should write objective and descriptive answer on plain white paper.
2. Give page number in each page starting from $1^{\text {st }}$ page.
3. After completion of examination, Scan all pages, convert into a single PDF, rename the file with Class Roll No. (2019MBA15) and upload to the Google classroom as attachment.
4. Exam timing from $10 \mathrm{am}-1 \mathrm{pm}$ (for morning shift).
5. Question Paper will be uploaded before 10 mins from the schedule time.
6. Additional 20 mins time will be given for scanning and uploading the single PDF file.
7. Student will be marked as ABSENT if failed to upload the PDF answer script due to any reason.

B.Sc. CHEMISTRY
 THIRD SEMESTER
 PHYSICAL CHEMISTRY-I
 BSC-102

Duration : 3 hrs.
Full Marks: 70

(PART-A: Objective $)$

Time : 20 min .
Marks : 20
Choose the correct answer from the following:
$1 X 20=20$

1. If a gas expand at constant temperature then:
a. The pressure increases
b. The number of molecule of the gas increases
c. The kinetic energy of the molecule remain same
d. The kinetic energy of the molecule decreases
2. The r.m.s. velocity of a gas depend upon:
a. Molar mass only
b. Temperature only
c. Both molar mass and temperature
d. None of these
3. Who among the following scientist has not done any important work on gases?
a. Charles
b. Boyle
c. Avogadro
d. Faraday
4. Choose the correct one:
a. $\mathrm{C}_{\mathrm{rms}}>\mathrm{C}_{\mathrm{av}}>\mathrm{C}_{\mathrm{p}}$
b. $C_{p}>C_{r m s}>C_{a v}$
c. $\mathrm{C}_{\mathrm{p}}>\mathrm{C}_{\mathrm{av}}>\mathrm{C}_{\mathrm{rms}}$
d. $\mathrm{C}_{\mathrm{rms}}>\mathrm{C}_{\mathrm{p}}>\mathrm{Cav}_{\mathrm{av}}$
5. The vibrational degree of freedom for CO_{2} molecule is:
a. 3
b. 4
c. 6
d. 12
6. Which of the following is correct for critical pressure?
a. a/27R ${ }^{2}$
b. $\mathrm{b} / 27 \mathrm{a}^{2}$
c. $\mathrm{b} / 27 \mathrm{R}^{2}$
d. $a / 27 b^{2}$
7. The temperature at which the second virial co-efficient of real gas is zero is known as:
a. Critical temperature
b. Boyle's temperature
c. Boiling temperature
d. None of these
8. Among the following which one will suitable for a real gas closely approaches to the behavior of an ideal gas?
a. 15 atm 200 K
b. 1 atm 273 K
c. 0.5 atm 500 K
d. 15 atm 500 K
9. Methyl orange is a:
a. Weak base
b. Strong base
c. Weak acid
d. Strong acid
10. PH is expressed as:
a. $\log \left(\mathrm{H}^{+}\right)$
b. $-\log \left(\mathrm{H}^{+}\right)$
c. $-\ln \left(\mathrm{H}^{+}\right)$
d. $\ln \left(\mathrm{H}^{+}\right)$
11. Ionic product of water is given by:
a. $1 \times 10^{-13} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$
b. $1 \times 10^{-12} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$
c. $1 \times 10^{-11} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$
d. $1 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$
12. Phenolphthalein is a :
a. Strong base
b. Weak base
c. Strong acid
d. Weak acid
13. PH^{H} range of phenolphthalein is:
a. 8.0-9.8
b. 10.1-12.1
c. 1.2-1.8
d.4.2-6.3
14. According to Trouton rule for a simple non-hydrogen bonded liquid, $\Delta \mathrm{S}_{\text {vap }}$ (in units of J $\mathrm{K} \mathrm{mol}^{-1}$) is approximately:
a. 80
b. 82
c. 85
d. 88
15. The surface tension of a liquid vanishes roughly \qquad above the critical temperature.
a. 4°
b. 3°
c. 6°
d. 5°
16. The Reynolds number for the laminar flow of a liquid through a pipe is approximately equal to:
a. 2000
b. 25000
c. 3000
d. 4500
17. Which among the following is not an amorphous solid?
a. Polythene
b. Graphite
c. Clay
d. Glass
18. Which of the following not a correct way of writing Miller indices?
a. (h, k, l)
b. $\{\mathrm{h}, \mathrm{k}, \mathrm{l}\}$
c. $[\mathrm{h}, \mathrm{k}, \mathrm{l}]$
d. All of them
19. Total numbers of point groups in solids are:
a. 7
b. 14
c. 32
d. 230
20. Which of the following terms are used for liquid crystals?
a. Nematic
b. Smectic
c. Lyotropic
d. All of them

(PART-B: Descriptive $)$

Time : 2 hrs. 40 min.
Marks : 50
[Answer question no. 1 \& any four (4) from the rest]

1. a. State and explain the three gas laws. Using these laws derive an
expression for ideal gas equation.
b. The surface tension of water is 72.8 dynes cm^{-1}. Calculate the energy
required to disperse one spherical drop of radius 3.0 mm into
spherical drops of radius $3.0 \times 10^{-3} \mathrm{~mm}$.
2. Write some of the postulates of kinetic theory gases. Derive an
expression for kinetic gas equation from kinetic theory.
3. a. What do you mean by a real gas and an ideal gas? Explain with 6 suitable examples about the non ideal behavior of an ideal gas.
b. Determine the ratio between root mean square velocity, average velocity and most probable velocity.
4. a. Determine the volume correction term in van-der-Wall's equation
and write the equation. What happen with van-der-Wall's equation
at low pressure, explain.
b. Determine the relationship between van-der-Wall's constants and
virial co-efficients.
5. a. With the help of hole theory describe the affect of temperature on
viscosity of liquids.
b. Write down three laws of crytallography. 3
c. Derive relationship between interplanner distance and miller indices. 4
6. a. Mention two differences between Frenkel and Schottky defects. 2
b. Describe difference between nematic and smectic liquid crystals. 3
c. KNO 3 crystallizes in orthorhombic system with the unit cell 5 dimensions $\mathrm{a}=542 \mathrm{pm}, \mathrm{b}=917 \mathrm{pm}$ and $\mathrm{c}=645 \mathrm{pm}$. Calculate the diffraction angles for first order X-ray refelction from (100), (010) and (111) planes using radiation with wave length $=154.1 \mathrm{pm}$.
7. a. Define p^{H} of a solution. What is common ion effect? Explain. 5
b. Explain the dissociation of a monobasic acid and determine the 5 dissociation constant. The dissociation constant of formic acid and acetic acid are 1.77×10^{-4} and 1.75×10^{-5} respectively, calculate the relative strength of the two acids.
8. a. What is an acid base indicator? Explain the titration of a strong acid
with a strong base.
b. Write the action of phenolphthalein. What is its limitation? 5

$$
==* * *==
$$

