ODD SEMESTER EXAMINATION: 2020-21

Exam ID Number					
Course	Semester				
Paper Code	Paper Title				
Type of Exam:	(Regular/Back/Improvement)				

Important Instruction for students:

- 1. Student should write objective and descriptive answer on plain white paper.
- 2. Give page number in each page starting from 1st page.
- 3. After completion of examination, Scan all pages, convert into a single PDF, rename the file with Class Roll No. **(2019MBA15)** and upload to the Google classroom as attachment.
- 4. Exam timing from 10am 1pm (for morning shift).
- 5. Question Paper will be uploaded before 10 mins from the schedule time.
- 6. Additional 20 mins time will be given for scanning and uploading the single PDF file.
- 7. Student will be marked as ABSENT if failed to upload the PDF answer script due to any reason.

Duration: 3 hrs.

Time: 20 min.

c. Weak acid

B.Sc. CHEMISTRY THIRD SEMESTER (REPEAT) PHYSICAL CHEMISTRY-I **BSC-102**

(<u>PART-A: Objective</u>)

Choose the correct answer from the following: **1.** If a gas expand at constant temperature then: a. The pressure increases **b.** The number of molecule of the gas increases d. The kinetic energy of the molecule **c.** The kinetic energy of the molecule remain same decreases 2. The r.m.s. velocity of a gas depend upon: a. Molar mass only **b**. Temperature only c. Both molar mass and temperature d. None of these 3. Who among the following scientist has not done any important work on gases? a. Charles **b.** Boyle d. Faraday c. Avogadro 4. Choose the correct one: **a.** $C_{rms} > C_{av} > C_p$ **b.** $C_p > C_{rms} > C_{av}$ $c. C_p > C_{av} > C_{rms}$ **d.** $C_{rms} > C_p > C_{av}$ 5. The vibrational degree of freedom for CO₂ molecule is: **a.** 3 **b**.4 c. 6 d.12 6. Which of the following is correct for critical pressure? **b.** b/27a² **a.** a/27R² c. b/27R² $d.a/27b^2$ 7. The temperature at which the second virial co-efficient of real gas is zero is known as: a. Critical temperature b. Boyle's temperature c. Boiling temperature d. None of these 8. Among the following which one will suitable for a real gas closely approaches to the behavior of an ideal gas? a. 15 atm 200 K **b.**1 atm 273 K c. 0.5 atm 500 K **d**. 15 atm 500 K 9. Methyl orange is a: a. Weak base b. Strong base

d. Strong acid

Full Marks: 70

1X20 = 20

Marks: 20

USTM/COE/R-01

 10. P^H is expressed as: a. log (H⁺) c. -ln (H⁺) 	b. -log (H ⁺) d. ln (H ⁺)
 11. Ionic product of water is given by: a. 1×10⁻¹³ mol² dm⁻⁶ c. 1×10⁻¹¹ mol² dm⁻⁶ 	b. 1×10 ⁻¹² mol ² dm ⁻⁶ d. 1×10 ⁻¹⁴ mol ² dm ⁻⁶
12. Phenolphthalein is a:a. Strong basec. Strong acid	b. Weak base d. Weak acid
 13. P^H range of phenolphthalein is: a. 8.0-9.8 c. 1.2-1.8 	b. 10.1-12.1 d. 4.2-6.3
 14. According to Trouton rule for a simple non- K mol⁻¹) is approximately: a. 80 c. 85 	hydrogen bonded liquid, ΔS _{vap} (in units of J b. 82 d. 88
 15. The surface tension of a liquid vanishes rouş a. 4° c. 6° 	ghlyabove the critical temperature. b. 3° d. 5°
16. The Reynolds number for the laminar flow of equal to:a. 2000c. 3000	of a liquid through a pipe is approximately b. 25000 d. 4500
17. Which among the following is not an amorpa. Polythenec. Clay	hous solid? b. Graphite d. Glass
18. Which of the following not a correct way of a. (h, k, l)c. [h, k, l]	writing Miller indices? b. {h, k, l} d. All of them
19. Total numbers of point groups in solids are:a. 7c. 32	b. 14 d. 230
20. Which of the following terms are used for licea. Nematicc. Lyotropic	uid crystals? b. Smectic d. All of them

-- --- --

(<u>PART-B : Descriptive</u>)

Time : 2 hrs. 40 min.				
	[Answer question no.1 & any four (4) from the rest]			
1.	a. State and explain the three gas laws. Using these laws derive an expression for ideal gas equation.	5		
	b. The surface tension of water is 72.8 dynes cm ⁻¹ . Calculate the energy required to disperse one spherical drop of radius 3.0 mm into spherical drops of radius 3.0×10^{-3} mm.	5		
2.	Write some of the postulates of kinetic theory gases. Derive an expression for kinetic gas equation from kinetic theory.	4+6=10		
3.	a. What do you mean by a real gas and an ideal gas? Explain with suitable examples about the non ideal behavior of an ideal gas.b. Determine the ratio between root mean square velocity, average	6 4		
	velocity and most probable velocity.			
4.	a. Determine the volume correction term in van-der-Wall's equation and write the equation. What happen with van-der-Wall's equation at low pressure, explain.	3+2=5		
	b. Determine the relationship between van-der-Wall's constants and virial co-efficients.	5		
5.	a. With the help of hole theory describe the affect of temperature on viscosity of liquids.	3		
	b. Write down three laws of crytallography.c. Derive relationship between interplanner distance and miller indices.	3 4		
6.	 a. Mention two differences between Frenkel and Schottky defects. b. Describe difference between nematic and smectic liquid crystals. c. KNO3 crystallizes in orthorhombic system with the unit cell dimensions a = 542pm, b=917pm and c=645pm. Calculate the diffraction angles for first order X-ray refelction from (100), (010) and (111) planes using radiation with wave length=154.1 pm. 	2 3 5		
7.	 a. Define p^H of a solution. What is common ion effect? Explain. b. Explain the dissociation of a monobasic acid and determine the dissociation constant. The dissociation constant of formic acid and acetic acid are 1.77 ×10⁻⁴ and 1.75 ×10⁻⁵ respectively, calculate the relative strength of the two acids. 	5 5		
8.	a. What is an acid base indicator? Explain the titration of a strong acid with a strong base.	5		
	b. Write the action of phenolphthalein. What is its limitation?	5		

= = *** = =