Write the following information in the first page of Answer Script before starting answer

ODD SEMESTER EXAMINATION: 2020-21

Exam ID Number					
Course	Semester				
Paper Code	Paper Title				
Type of Exam:	(Regular/Back/Improvemen	nt)			

Important Instruction for students:

- 1. Student should write objective and descriptive answer on plain white paper.
- **2.** Give page number in each page starting from 1st page.
- **3.** After completion of examination, Scan all pages, convert into a single PDF, rename the file with Class Roll No. (2019MBA15) and upload to the Google classroom as attachment.
- **4.** Exam timing from 10am 1pm (for morning shift).
- 5. Question Paper will be uploaded before 10 mins from the schedule time.
- **6.** Additional 20 mins time will be given for scanning and uploading the single PDF file.
- **7.** Student will be marked as ABSENT if failed to upload the PDF answer script due to any reason.

2021/03

BACHELOR of COMPUTER APPLICATION FIRST SEMESTER DIGITAL LOGIC & DESIGN BCA – 103 [REPEAT]

Duration: 3 hrs.	Full Marks: 70
------------------	----------------

(PART-A: Objective)

Time : 20 min. Marks : 20

\boldsymbol{C}	hoose the correct answer from the fo	llowing:	1X20=20
1.	What is the addition of the binary numbers 110110 a. 0111001000 c. 11101111111	011010 and 010100101? b. 1100110110 d. None of the above	
2.	The decimal equivalent of the octal number $(645)_8$ a. $(450)_{10}$ c. $(421)_{10}$	is b. (451) ₁₀ d. (501) ₁₀	
3.	On subtracting (01010) ₂ from (11110) ₂ using 1's cor a. 01001 c. 10101	mplement, we get b. 11010 d. 10100	
4.	The largest two digit hexadecimal number is a. $(FE)_{16}$ c. $(FF)_{16}$	b. (FD) ₁₆ d. (EF) ₁₆	
5.	The minterm expansion of $f(P, Q, R) = PQ + QR' + a$. $m2+m4+m6+m7$ c. $m2+m4+m6+m8$	PR' is b. m0+m1+m3+m5 d. None of the above	
6.	The simplified SOP (Sum Of Product) form of the $Q' + R$) . $(P + Q + R')$ is a. $PQ' + R$ c. $P + Q'R'$	boolean expression (Pb. P+QRd. None of the avobe	, ,
7.	(A + B)(A' * B') = ? a. 1 c. AB	b. 0 d. AB'	
8.	The expression Y=AB+BC+AC shows the a. EX-OR c. POS	operation. b. SOP d. NOR	
9.	A K-map is a systematic way of reducing which ty a. Product of sums c. Sum of products	rpe of expression ? b. Exclusive NOR d. None of the above	

10. When A',B' are the inputs to a NAND gate, according to De-Morgan's theorem, the				
output expression could be a. X= A+B	b. X=(AB)'			
c. X=(A)(B)	d. None of the above			
11. How many AND gates are required to realize Y =a. 4c. 3	CD + EF + G? b. 5 d. 2			
12. The number of min-terms after minimizing the fo	allowing Boolean expression is			
	2. The number of min-terms after minimizing the following Boolean expression is			
[D' + AB' + A'C + AC'D + A'C'D]'				
a. 1	b. 2			
c. 3	d. 4			
13. A decoder converts N inputs to outputs				
a. N	b. N ²			
c. 2 N	d. N ^N			
14. How many truth table entries are necessary for a f	our-input circuit?			
a. 4	b. 8			
c. 12	d. 16			
15. A full adder can be made out of				
a. Two half adders	b. Two half adders and OR gate			
c. Two half adders and NOT gate	d. Three half adders			
16. Which device has one input and many outputs?				
a. De multiplexer	b. Multiplexer			
c. Counter	d. Flip-flop			
7. In a sequential circuit, the output at any time depends only on the input values at that				
time. a. Past output values	b. Intermediate values			
c. Both past output and present input	d. Present input values			
18. A ripple counter is a (n):	-			
a. Asynchronous Counter	b. Synchronous Counter			
c. Parallel Counter	d. None of the above			
19. The D flip-flop has inputs				
a. 1	b. 3			
c. 2	d. 4			
20. The function $AB'C + A'BC + ABC' + A'B'C + AB'C$	' is equivalent to			
a. A'B+AC'+AC	b. A'B'+A'C'+AC			
c. AB'+AC'+A'C	d. None of the above			

PART-B : Descriptive

Time: 2 hrs. 40min. Marks:50

[Answer question no.1 & any four (4) from the rest]

- 1. Write truth table and logic diagram for five very important gates in digital system.
- 2. Minimize the following with the help of K-map and draw the logic circuit for the minimized expression. 5+5=10
 - **a.** $F=\Sigma(2,3,4,5,6,7,9,12,13,14,15)$
 - **b.** F = ac' + a'b'c' + a'b + ab
- 3. How many types of shift registers are available? Explain each of them with diagram.
- 4. a. How we create a Master- Slave flip flop using two JK flip flop?b. Explain mod-14 negative edge asynchronous up counter with diagram.
- 5. **a.** Write the truth table and draw logic circuit diagram for full adder which consist of two half adders and one OR gate. 5+5=10
 - **b.**Explain octal to binary encoder.
- 6. **a.** Perform the following subtractions using 1's and 2's complement methods: 4+4+2= 10
 - i. 1101₍₂₎ 1010₍₂₎
 - ii. 10101 ₍₂₎ 10111 ₍₂₎
 - **b.**Convert 4AB₁₆ to binary.
- 7. Simplify the following expression
 - **a.** X=[AB'(C+BD)+A'B']C
 - **b.** X=A'+AB+AC'+AB'C'
 - 8. Write short notes on any two: 5+5=10
 - **a.** SR Flip Flop with NAND gate
 - b. Synchronous Down counter
 - c. 16:1 Multiplexer

= = *** = =

4+6=10