B.Sc. ELECTRONICS Fifth Semester PHOTONICS AND OPTOELECTRONICS DEVICES (BSE - 23)

Duration: 3Hrs.

Full Marks: 70

Part-A (Objective) =20 Part-B (Descriptive) =50

(PART-B: Descriptive)

Duration: 2 hrs. 40 mins.

Marks: 50

Answer any four from Question no. 2 to 6 Question no. 1 is compulsory.

- 1. What are the different modes exist in laser operation? Give a comparison in between them. (5+5=10)
- 2. Explain the operation of a diode laser. How mode locking is done in laser?(5+5=10)
 - Explain the various phases of liquid crystals.

(10)

4. What is EDFA? Explain its working principle.

- (2+8=10)
- 5. Deduce the field distribution equation at the back focal length of a lens. (3+7=10)
- 6. Write short notes (any two):

 $(5 \times 2 = 10)$

- a. Pockel's cell
- b. Q-switching
- c. Chromatic aberration

B.Sc. ELECTRONICS Fifth Semester PHOTONICS AND OPTOELECTRONICS DEVICES (BSE - 23)

(PART A - Objective Type)					
I. Tick the correct answer: 1×20=20					
	1.	For a step-index fiber the N a. varies c. is constant	JA across the core b. will be opposite d. is independent		
	2.	Developed the first laser a. Charles Townes c. Gordon McKenzie	b. Theodore Maiman d. Albert Einstein		
	3.	Which color has the shortes a. Red c. Blue	b. Yellow d. Green		
,	4.	 4. The core of an optical fiber has a a. Lower refracted index than air. b. Lower refractive index than the cladding. c. Higher refractive index than the cladding. d. Similar refractive index with the cladding. 			
	5.		of entry of light into an optical fiber when the diameter of the elength of the light transmitted. b. Modes d. Aperture		
•	6.	The loss in signal power as a. Dispersion c. Absorption	light travels down a fiber is called b. Scattering d. Attenuation		
	7.	is the width of a. Bandwidth c. Spectral width	the range of wavelengths emitted by the light source b. Chromatic Dispersion d. Beamwidth		
	8.	Fiber optic cables operate a a. 20 MHz c. 2G Hz	t frequencies near b. 200 MHz d. 800 THz		

9.	When a beam of light enter a. Direction c. Frequency	one medium from another, which quantity will not change? b. Speed d. Wavelength		
10	Dispersion is used to describe the a. Splitting of white light into its component colors. b. Propagation of light in straight lines. c. Bending of a beam of light when it goes from one medium to another. d. Bending of a beam light when it strikes a mirror.			
11	The wavelength of light has a. Diffraction c. Polarization	no role in b. Interference d. Reflection		
12	is caused by the different paths down a fiber a. Material dispersion c. Modal dispersion	b. Wavelength dispersion		
13	Photodiodes used as fiber of a. Unbiased to generate a verb. Forward bias. c. Reversed bias. d. Thermoelectrically coole	ltage same as a solar cell.		
14.	_	ighest modal dispersion? b. Graded index multimode d. Graded index mode		
15.	Laser light is emissi a. Coherent c. Spontaneous	on. b. Stimulated d. Coherent and stimulated		
16.	Which type of laser is the sia. Semiconductor c. Helium-neon	mplest to modulate directly by changing its excitation? b. Ruby d. Neodymium-YAG		
17.	What is the photon energy fa. 10.6 x 1034 joules c. 6.63 x 10-22 joules	or an infrared wave with frequency of 1012 Hz? b. 6.63 x 10-34 joules d. 10.6 x 1022 joules		
	Which of the following fact a. Atmospheric absorption. b. Excitation energy not abs c. Problems in depopulating d. Inefficiency in populating	the lower laser level.		
	The numerical aperture of a a. 017 b. 0.26	fiber if the angle of acceptance is 15 degrees, is c. 0.50 d. 0.75		

20. The term critical angle describes

- a. the point at which light is refracted.
- b. the point at which light becomes invisible.
- c. the point at which light has gone from the refractive mode to the reflective mode.
- d. the point at which light has crossed the boundary layers from one index to another.
