B.Sc. CHEMISTRY First Semester TRIGONOMETRY (BSC - 103 A)

Duration: 1 Hr. 30 mins.

Full Marks: 35

> PART A $($ Objective $)=10$
> PART-B (Descriptive) $=\mathbf{2 5}$

PART-B (Descriptive)

Duration: 1 hrs. 20 mins.
Marks: 25

1. Answer any two questions from the following: $(2 \times 10=20)$
a) find the square root of $\dot{x}^{2}+\frac{1}{x^{2}}-\frac{4}{i}\left(x+\frac{1}{x}\right)-2$. If $\sqrt{(a+i b)}=x+i y$, then show that $\sqrt{(a-i b)}=x-i y$
b) Write the properties of cube roots of unity. Find all the values of $(1+i)^{\frac{1}{2}}$

$$
(6+4=10)
$$

c) Explain Amplitude of $\mathrm{z}=\mathrm{x}+\mathrm{iy}$. Derive DeMoivre's Theorem. $(2+8=10)$
d) Expand $\cos ^{2} \epsilon$ in powers of ϵ. Find the limiting value of $\frac{\tan 2 \theta-2 \sin \theta}{\theta^{2}}$, when 6 tends to zero
2. If $m=u-e$ sinu and if e be so small that its powers above the second may be neglected, then show that
$u=m+e \sin m+\frac{1}{2} e^{2} \sin 2 m$.

B.Sc. CHEMISTRY
 First Semester
 TRIGONOMETRY
 (BSC - 103 A)

Duration: 10 minutes
Marks - 10
(PART A - Objective Type)

I. Choose the correct answer:

1. The sum of the three cube roots of unity is
(i)One
(ii) zero
(iii) three
(iv) two
2. The product of two imaginary cube roots of unity is
(i)Unity
(ii) Null
(iii) two
(iv) None of these
3. Each \qquad .cube root of unity is the square of the other.
(i)real
(ii) imaginary
(iii) sum of
(iv) None of these
4. The amplitude can evidently have an infinite number of values differing from each other by complete multiples of
(i) π
(ii) 3π
(iii) 2π
(iv) None of these
5. If $z=x+i y$ then the relation $z+\bar{y}$ gives
(i) $2 \mathrm{I}(\mathrm{z})$
(ii) $2 \operatorname{Re}(\mathrm{z})$
(iii) $2 \mathrm{Q}(\mathrm{z})$
(iv) None of these
6. If $x^{n}+\frac{1}{x^{n}}=2 \cos n t$, then $x+\frac{1}{x}=2 \cos t$,
(i) $\left.x\right|_{x} ^{1}=2 \cos t$
(ii) $x \quad{ }_{x}^{1}=2 \cos t$
(iii) $x+\frac{1}{x}=2 \sin t$
(iv) None of these
7. The series expansion $1-\frac{a^{2}}{2!}+\frac{a^{4}}{4!}-\cdots \ldots .+(-1)^{n} \frac{a^{2 n}}{(2 n)!}+$ \qquad is the expansion of
(i) $\sin \alpha$
(ii) $\cos \alpha$
(iii) $\tan \alpha$
(iv) None of these
8. The value of $\cos x$ is
(i) $\frac{1}{2}\left(e^{2 x}+e^{-2 x}\right)$
(ii) $e^{i x}$
(iii) $\frac{1}{2}\left(e^{i x}-e^{-i x}\right)$
(iv) None of these
9. Any positive integral power of ω is equal to
(i)- $1,\left(a,(a)^{2}\right.$
(ii) $1,(t),(t)^{2}$
(iii) $1,-\omega,-\omega^{2}$
(iv) 0
10. The square root of $-i$ is
(i) $\pm \frac{(1-i)}{\sqrt{2}}$
(ii) $\pm \frac{(1+i)}{\sqrt{2}}$
(iii) $1+\mathrm{i}$
(iv) Cannot be defined
