REV-00 BSC/07/12

2016/12

B.Sc. CHEMISTRY First Semester CLASSICAL ALGEBRA (BSC – 103 A)

Duration: 3Hrs.

Full Marks: 70

Part-A (Objective) =20 Part-B (Descriptive) =50

(PART-B: Descriptive)

Duration: 2 hrs. 40 mins.

Marks: 50

Answer any *four* from *Question no.* 2 to 8 *Question no.* 1 is compulsory.

- 1. Derive the complete solution of a cubic equation using Cardon's method. Solve the equation $x^3 - 3x - 1 = 0$ using Cardon's method. (6+4=10)
- 2. If a,b be positive real nos and a > b and n be a positive integer, then prove that $a^n > b^n$. Also if a,b,c be all positive real nos, prove that

$$\frac{(a^2+b^2)}{a+b} + \frac{(b^2+c^2)}{b+c} + \frac{(c^2+a^2)}{c+a} \ge a+b+c$$
(5+5=10)

- Define Arithmetic mean, Geometric Mean and Harmonic Mean. State and prove Cauchy Schwarz's inequality. (5+5=10)
- 4. What is transpose of a matrix? If A is a square matrix of order n, then $A(AdjA) = |A|I_n = (AdjA)A$, where I_n is the unit matrix of order n. (2+8=10)
- 5. Suppose A is defined by $A = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}$ and let $f(x) = 2x^2 3x + 5$ and $g(x) = x^2 + 3x 10$. What is f(A) and g(A)? And

Solve the following system of equation with the help of matrices

3x + y + 2z = 3, 2x - 3y - z = -3, x + 2y + z = 4 (10)

6. If a,b,c are respectively the sum of p,q,r terms of an A.P, prove that

$$\frac{a}{p}(q-r) + \frac{b}{q}(r-p) + \frac{c}{r}(p-q) = 0$$
 and

How many terms of the series 27+24+21+18+..... will add upto 126.

(5+5=10)

7. Write about limit inferior and limit superior. Test for convergence of the series

 $1 + \frac{1}{2} \cdot \frac{x^2}{4} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^4}{8} + \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10} \frac{x^6}{12} \dots \dots$ (5+5=10)

8. State Cauchy's Root test. Prove that a convergent sequence of real numbers is a Cauchy sequence. (2+8=10)

REV-00 BSC/07/12

2016/12

B.Sc. CHEMISTRY First Semester CLASSICAL ALGEBRA (BSC – 103 A)

Duration: 20 minutes

(PART A - Objective Type)

I. Choose the correct answer:

- 1. If a > b > 0 and n be a negative term then (i) $a^n > b^n$ (ii) $a^n = b^n$ (iii) $a^n < b^n$ (iv) a>b
- 2. If n be a positive integer greater than 1, then

(i) $n(n + 1)^2 > 4n$ (ii) $n(n + 1)^2 > 4(n!)^{3/n}$ (iii) n=0 (iv) None of these

- 3. The inverse of a matrix A is given by
 - (i) $Adj A = A^{-1}$ (ii) $\frac{AdjA}{|A|} = A^{-1}$ (iii) $\frac{AdjA}{|A|} = A^{-1}$ (iv) $Adj A = \frac{1}{A^{-1}}$

4. If a matrix has a nonzero minor of order r, its rank is
(i) greater than and equal to r
(ii) less than and equal to r
(iii) less than and equal to r
(iv) None of these

- 5. When rows and columns of a matrix are interchanged, then it is known as..... of a matrix.
 (i) inverse
 (ii) transpose
 (iii) adjoint
 (iv) None of these
- 6. If a_1, a_2, \dots, a_n be n positive real nos, then (i) A.M<G.M (ii) A.M \geq G.M (iii) A.M \leq G.M (iv) None of these
- 7. If a₁, a₂, a₃, a_n be n positive real numbers, then

 (a₁² + a₂² + + a_n²)(b₁² + b₂² + + b_n²) ≥ (a₁b₁ + + a_nb_n)². This is the statement of

 (i) Minkowski's inequality

 (ii) Cauchy Schwarz inequality
 (iii) Holders inequality
 (iv) None of these
- 8. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & 6 \\ 0 & -2 \end{bmatrix}$. Is (i) AB=BA (ii)AB \neq BA (iii) AB=0 (iv) None of these

 $1 \times 20 = 20$

Marks - 20

	9. If α , β , γ be the roots of cubic equation $x^3 + px^2 + qx + r = 0$, then $\sum \alpha^2$ is (i) $p^2 + 2q = 0$ (ii) $p^2 - 2q = 0$ (iii) $p^2 - q = 0$ (iv) 0
	 10. If a function remains unaltered by an interchange of any two of its variables then it is (i) Singular function (ii) Asymmetric function (iv) Cannot be defined
	11. If two roots of the equation $2x^3 - x^2 - 18x + 9 = 0$ are equal in magnitude but opposite in sign, then the roots are (i) 2,1,1 (ii) 3,-3, $\frac{1}{2}$ (iii) 2,1,1 (iv) 1,0,0
	12. If α be a root of order 3 of the equation $x^4 + bx^2 + cx + d = 0$, then α is (i) $\frac{-8d}{3c}$ (ii) $\frac{8d}{3c}$ (iii) 1 (iv) 0
2	13. If $G^2 + 4H^3 > 0$ of the cubic equation $a_0x^3 + 3a_1x^2 + 3a_2x + a_3 = 0$ then the cubic has imaginary roots. (i) three (ii) four (iii) one (iv) two
	14. Every convergent sequence of real numbers is(i) Cauchy sequence(ii) Monotone sequence(iii) Monotone sequence(iv) None of these
	15.A sequence S_n is said to be bounded iff their exist a real number $k > 0$ such that (i) $ S_n \le k$ (ii) $ S_n \ge k$ (iii) $ S_n = k$ (iv) $ S_n = 0$
	 16. If S₁ ≤ S₂ ≤ S₃ ≤ S_n ≤ in a sequence {S_n}, then it is a sequence. (i) nonincreasing (ii) nondecreasing (iii) null (iv) None of these
	17.If a sequence $\{S_n\}$ converges to 1, then $\{S_n\}$ has a limit (i) l^2 (ii) l^3 (iii) 1 (iv) 1
	18.In D' Alembert's Ratio Test the series $\sum u_n$ of positive terms is divergent if(i) Greater than 1(ii) less than 1(iii) Equal to 1(iv) None of these
	19.If α, β, γ be the roots of the cubic equation $a_0 x^3 + a_1 x^2 + a_2 x + a_3 = 0$, then (i) $\sum \alpha = -\frac{a_1}{a_0}$ (ii) $\sum \alpha = \frac{a_1}{a_0}$ (iii) $\sum \alpha = 0$ (iv) $\sum \alpha = 1$
	20. The standard form of a cubic equation $a_0x^3 + a_1x^2 + a_2x + a_3 = 0$ with binomial coefficient is (i) $z^3 + 3H^2z + 3H + G = 0$ (ii) $z^3 + 3Hz + G = 0$ (iii) $z = 0$ (iv) $z = 1$

1
