M.SC. CHEMISTRY
 Second Semester Inorganic Chemistry

(MSC-07)
Duration: 3Hrs.
Full Marks: 70

(PART-B: Descriptive)

Duration: $\mathbf{2}$ hrs. 40 mins .
Marks: 50

1. Answer the following questions:
a) Predict the geometry of the following molecules in the light of VSERP theory
i) IF_{3}
ii) SF_{4}
iii) XeF_{4}
$2 \times 3=6$
b) Explain the Allred-Rochow method for the determination of electronegativity. 3
c) What are the five collalories of the Great Orthogonal Theorem?
d) Write down the systematic procedure for the symmetry classification of molecules .
e) Write down the character table for a the molecule PCl_{5}

Or
Draw and explain the Walsh diagram for the $\mathrm{H}_{2} \mathrm{O}$ molecule
i) Write short notes on:
$21 / 2 \times 2=5$
i) Orbital overlap
ii) Reducible and Irreducible representation
2. Answer the following questions (any three)
a) Explain the chemistry of isopoly and heteropoly acids/salts of molybdenum and tungsten.
b) Why $1^{\text {st }}$ transition series elements possess different properties from those elements of heavier transition elements? Explain.
c) What is column efficiency? Explain the plate theory of chromatography.
d) What is high performance liquid chromatography? What types of materials are used for the columns of both normal and reverse phase chromatography? Explain reverse phase HPLC.
e) What is LCMS? Explain. Why it is superior to GCMS?
3. Write short notes on (any two):
a) Creutz-Taube ion,
b) Ion exchange chromatography,
c) Adsorption chromatography

M.SC. CHEMISTRY
 Second Semester Inorganic Chemistry

(MSC-07)
(The figures in the margin indicate full marks for the questions)
Duration: 20 minutes
Marks - 20
(PART A- Objective)
Choose the correct answer:
$1 \times 20=20$

1. The molecule closo- $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$ has the point group
i) $\mathrm{D}_{2} \mathrm{~h}$
ii) $\mathrm{C}_{2 v}$
iii) O_{h}
iv) C_{3}
2. The molecule ICl_{3} belongs to the system
i) $\mathrm{AB}_{4} \mathrm{E}_{2}$
ii) $\mathrm{AB}_{2} \mathrm{E}_{3}$
iii) AB_{2}
iv) $\mathrm{AB}_{2} \mathrm{E}_{2}$
3. The total numbers of horizontal planes of symmetry in an octahedron are
i) 2
ii) 3
iii) 4
iv) 5
4. The total number of proper C_{3} axes in a tetrahedron are
i) 4
ii) 5
iii) 6
iv) 8
5. The bond order of NO^{+}is
i) 1.5
ii) 2
iii) 2.5
iv) 3
6. The bond order of $\mathrm{O}_{2}{ }^{2-}$ is
i) 1
ii) 1.5
iii) 2
iv) 2.5
7. The shape of $\mathrm{SOF}_{4}{ }^{+}$is
i) Trigonal pyramidal
ii) tetrahedral
iii) square pyramidal
iv) octahedral
8. The NO molecule has \qquad electron(s) in the anti-bonding orbital
i) 1
ii) 2
iii) 3
iv) 4
9. In the Walsh diagram the variation of the bond angle for an XH_{2} molecule is
i) 45-60 degrees
ii) 60-90 degrees
iii) 90-180 degree
iv) $180-240$ degrees
10. The delta bonds contain
i) Pi - bond
ii) sigma bond
iii) coordinate bond
iv) quadruple bonds
11. The correct order of elution of the following solutes in reversed phase HPLC is:
(A) Benzene
(B) 4-Chlorobenzene
(C) phenol
(D) Hydroquinone
(i) A, B , C , D
(ii) $\mathrm{D}, \mathrm{C}, \mathrm{B}, \mathrm{A}$
(iii) $\mathrm{C}, \mathrm{D}, \mathrm{A}, \mathrm{B}$
(iv) $\mathrm{B}, \mathrm{A}, \mathrm{C}, \mathrm{D}$
12. Mobile phase for gas chromatography is
(i) Helium
(ii) Hexane
(iii) Benzene
(iv) Oxygen
13. In HPLC, smaller stationary phase particles results in
(i) Higher operating pressures for the same flow rate.
(ii) Smaller plate heights.
(iii) Better separations.
(iv) Higher column costs.
(v) All the above are correct.
14. Which of the following detectors in GC allows for both identification and quantification of an unknown peak in a sample?
(i) Mass spectroscopy
(ii) Flame ionization
(iii) Thermal conductivity
(iv) Liquid chromatography
15. Osmium (Os) exhibits several oxidation states because
(i) Its atomic number is high
(ii) It forms strong bond with oxygen
(iii) $4 f$ orbitals participate in bonding
(iv) Only 6S orbital participates in bonding
16. Among the following compounds that is both paramagnetic and coloured
(i) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(ii) $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{TiCl}_{6}\right]$
(iii) VOSO_{4}
(iv) $\mathrm{K}_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$
17. The value of 'spin only' magnetic moment for one of the following configurations is 2.84 BM . The correct one is
(i) $\quad d^{4}$ (in strong ligand field)
(ii) d^{4} (in weak ligand field)
(iii) d^{3} (in weak as well as strong ligand fields)
(iv) d^{5} (in strong ligand field)
18. In context to the transition elements, which of the following statements is incorrect?
(i) In higher oxidation states, the transition metals show basic character and form cationic complexes.
(ii) In the highest oxidation states of the first five transition elements (Sc to Mn), all the 4 s and 3 d electro, are used for bonding.
(iii) Once the d^{5} configuration is exceeded, the tendency to involve all the 3 d electrons in boding decreases.
(iv) In addition to the normal oxidation states, the zero oxidation state is also shown by these elements in complexes.
19. Among the following oxides of manganese the order of increasing acidic strength is
(i) $\mathrm{MnO}>\mathrm{Mn}_{3} \mathrm{O}_{4}>\mathrm{Mn}_{2} \mathrm{O}_{3}>\mathrm{MnO}_{2}>\mathrm{Mn}_{2} \mathrm{O}_{7}$
(ii) $\mathrm{MnO}<\mathrm{Mn}_{3} \mathrm{O}_{4}<\mathrm{Mn}_{2} \mathrm{O}_{3}<\mathrm{MnO}_{2}<\mathrm{Mn}_{2} \mathrm{O}_{7}$
(iii) $\mathrm{MnO}>\mathrm{Mn}_{3} \mathrm{O}_{4}>\mathrm{Mn}_{2} \mathrm{O}_{7}>\mathrm{MnO}_{2}>\mathrm{Mn}_{2} \mathrm{O}_{3}$
(iv) $\mathrm{MnO}<\mathrm{Mn}_{3} \mathrm{O}_{4}<\mathrm{Mn}_{2} \mathrm{O}_{3}<\mathrm{Mn}_{2} \mathrm{O}_{7}<\mathrm{MnO}_{2}$
20. The colour of the transition metal ions is due to
(i) d-d transition,
(ii) charge transfer,
(iii) change in geometry
(iv) none
