REV-00 MSC /08 /12

> M.SC. CHEMISTRY Second Semester Inorganic Chemistry

> > (MSC-07)

Duration: 3Hrs.

(PART-B: Descriptive)

Duration: 2 hrs. 40 mins.

Marks: 50

Full Marks: 70

1. Answer the following questions:

a)	Predict the geometry of the i) IF ₃	he following molecule ii) SF ₄	s in the light of VSERP the iii) XeF ₄	eory 2×3=6
b)	Explain the Allred -Roch	now method for the de	termination of electronega	tivity. 3
_c)	What are the five collalor	ries of the Great Ortho	gonal Theorem?	3
d)	Write down the systemat	ic procedure for the sy	mmetry classification of n	nolecules.
e)	Write down the characte	r table for a the molect Or	ule PCl ₅	5
-	Draw and explain the V	Valsh diagram for the l	H ₂ 0 molecule	
1)	Write short notes on:		2	$\frac{1}{2} \times 2 = 5$
	i) Orbital overlap			

ii) Reducible and Irreducible representation

2013/02

- 2. Answer the following questions (any three)
 - a) Explain the chemistry of isopoly and heteropoly acids/salts of molybdenum and tungsten.
 - b) Why 1st transition series elements possess different properties from those elements of heavier transition elements? Explain.
 - c) What is column efficiency? Explain the plate theory of chromatography.
 - d) What is high performance liquid chromatography? What types of materials are used for the columns of both normal and reverse phase chromatography? Explain reverse phase HPLC.
 - e) What is LCMS? Explain. Why it is superior to GCMS?
- 3. Write short notes on (any two):

a) Creutz-Taube ion,

- b) Ion exchange chromatography,
- c) Adsorption chromatography

5×3=15

5×2=10

REV-00 MSC / 08/12

2013/02

M.SC. CHEMISTRY Second Semester Inorganic Chemistry

(MSC-07)

(The figures in the margin indicate full marks for the questions)

Duration: 20	minutes		Marks – 20			
	RT A- Objective)	ive)				
Choose the co	rrect answer	:	1×20=20			
1. The molecul	e closo- [B ₆ H	$\left[I_6\right]^{2^2}$ has the point g	group			
i)D ₂ h	ii) C _{2v}	iii) O _h	iv) C ₃			
2. The molecu	le ICl ₃ belong	gs to the system				
i) AB ₄ E ₂	ii) AB ₂ E ₃	iii) AB ₂	iv) AB ₂ E ₂			
3. The total numbers of horizontal planes of symmetry in an octahedron are						
i) 2	ii) 3	iii) 4	iv) 5			
4. The total nui) 4	umber of prop ii) 5	ber C3 axes in a tetr iii) 6	rahedron are iv) 8			
5. The bond order of NO^+ is						
i) 1.5	ii) 2	iii) 2.5	iv) 3			
6. The bond of	rder of O_2^{2-} is	r solutiones. La serie amonente de la serie de la				
i) 1	ii) 1.5	iii) 2	iv) 2.5			
7. The shape o	f SOF ₄ ⁺ is					
i) Trigonal p iii) square py	yramidal ramidal	ii) tetrah iv) octah	edral edral			

8. The NO molecule has	electro	n(s) in the anti-bonding	orbital				
i) 1 ii) 2	iii)	3 iv) 4					
9. In the Walsh diagram	In the Walsh diagram the variation of the bond angle for an XH ₂ molecule is						
i) 45-60 degrees	ii) 60-90 degrees	iii) 90 - 180 deg	ree iv) 180 – 240 degrees			
10. The delta bonds contain	n						
i) Pi – bond	ii) sigma bond	iii) coordinate bo	nd iv	() quadruple bonds			
11. The correct order of elu(A) Benzene	ution of the following so (B) 4-Chlorobenzene	olutes in reversed phase H (C) pheno	IPLC is: 1 (I	D) Hydroquinone			
(i) A, B, C, D	(ii) D, C, B, A	(iii) C, D, A, B	(iv) B, A	, C, D			
12 Mobile phase for gas of	bromatography is						
(i) Halian		(:::) D					
(1) Hellum	(11) Hexane	(III) Benzene	(1V) Oxy	gen			
13. In HPLC, smaller statio	onary phase particles re-	sults in					
(i) Higher operating pre-	ssures for the same flov	v rate.					
(ii) Smaller plate height	s.						
(iii) Better separations.							
(iv) Higher column cost	S.						
(v) All the above are con	rrect.						
14. Which of the following peak in a sample?	detectors in GC allows	for both identification an	d quantificatio	on of an unknown			
(i) Mass spectroscopy	(ii) Fla	me ionization					
(iii) Thermal conductivi	ty (iv) Lic	luid chromatography					
15. Osmium (Os) exhibits	several oxidation states	because					

(i) Its atomic number is high

4

(iii) 4f orbitals participate in bonding

(iv) Only 6S orbital participates in bonding

(ii) It forms strong bond with oxygen

16. Among the following compounds that is both paramagnetic and coloured

(i) $K_2Cr_2O_7$ (ii) $(NH_4)_2[TiCl_6]$ (iii) $VOSO_4$ (iv) $K_3[Cu(CN)_4]$

17. The value of 'spin only' magnetic moment for one of the following configurations is 2.84 BM. The correct one is

- (i) d^4 (in strong ligand field)
- (ii) d^4 (in weak ligand field)
- (iii) d^3 (in weak as well as strong ligand fields)
- (iv) d^5 (in strong ligand field)

18. In context to the transition elements, which of the following statements is incorrect?

- (i) In higher oxidation states, the transition metals show basic character and form cationic complexes.
- (ii) In the highest oxidation states of the first five transition elements (Sc to Mn), all the 4s and 3d electror are used for bonding.
- (iii) Once the d^5 configuration is exceeded, the tendency to involve all the 3d electrons in boding decreases.
- (iv) In addition to the normal oxidation states, the zero oxidation state is also shown by these elements in complexes.
- 19. Among the following oxides of manganese the order of increasing acidic strength is
 - (i) $MnO>Mn_3O_4>Mn_2O_3>MnO_2>Mn_2O_7$
 - (ii) $MnO < Mn_3O_4 < Mn_2O_3 < MnO_2 < Mn_2O_7$
 - (iii) $MnO>Mn_3O_4>Mn_2O_7>MnO_2>Mn_2O_3$
 - (iv) $MnO < Mn_3O_4 < Mn_2O_3 < Mn_2O_7 < MnO_2$

20. The colour of the transition metal ions is due to

(i) d-d transition,

(ii) charge transfer,

(iii) change in geometry

(iv) none