B.Sc. ELECTRONICS
 First Semester
 MATHEMATICS-I
 (BSE - 104)

Duration: 3Hrs.
Full Marks: 70
Part-A (Objective) $=\mathbf{2 0}$
Part-B (Descriptive) $=50$
(PART-B: Descriptive)
Duration: $\mathbf{2}$ hrs. $\mathbf{4 0}$ mins.
Marks: $\mathbf{5 0}$

I. Answer any five of the following questions:

1. Find the modulus and argument of the complex numbers, $\frac{1+i}{1-i}$ and $\frac{2+3 i}{i}$. $\quad(6+4=10)$ Express $\frac{(\cos \theta+\sin \theta)^{8}}{(\sin \theta+\cos \theta) 4}$ in the form $x+i y$.
2. (i) Find the middle term of $(x+2)^{7}$ and $\left(2 x+\frac{1}{x}\right)^{14}$.
(ii) Show that $\left(1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots \infty\right)-\left(x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \infty\right)=1$
3. (i) Solve the equation $2 x^{3}+3 x^{2}-32 x-48=0$, given that the sum of any two roots are zero.
(ii) Solve the equation $2 x^{3}-3 x^{2}-6 x+8=0$, given that the roots are in A. P. $\quad(5+5=10)$
4. Write any two properties of (i) matrix multiplication and (ii) transpose of matrix.

Find $A B$ and $B A$, where, $A=\left(\begin{array}{ccc}2 & 1 & 3 \\ -1 & 4 & -6 \\ 7 & 1 & 2\end{array}\right)$ and $B=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 4 & 5 \\ 0 & 2 & 1\end{array}\right)$.
5. Solve the following system of equations $x+y+z=6, x+2 z=7,3 x+y+z=12$ by using (i) matrix method (ii) Cramer's rule.
6. Define inverse of a square matrix. Find A^{-1}, where $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 1 & 0 & 1 \\ -1 & 2 & 3\end{array}\right)$. Prove $A B=B A=I$, where $B=\frac{\operatorname{adj} A}{|A|}$.
7. Separate the following into real and imaginary part:
(i) $\sin (x+i y)$
(ii) $\cos (x+i y)$
(iii) $\tan (x+i y)$
(iv) $\cot (x+i y)$
(v) $\sec (x+i y)$
(vi) $\operatorname{cosec}(x+i y)$
8. Express, (i) $\sin ^{7} \theta$ as a sum of sines of multiples of θ.
(ii) $\cos ^{8} \theta$ as a sum of cosines of multiples of θ.

B.Sc. ELECTRONICS
 First Semester
 MATHEMATICS-I
 (BSE - 104)

Duration: 20 minutes
Marks - 20

(PART A - Objective Type)

I. Choose the correct answer:

1. Sum of the roots of the equation $x^{5}+3 x^{4}+4 x^{3}+12=0$ is
(i) 3
(ii) -3
(iii) 1
(iv) -1
2. Sum of the products of the roots taken two at a time of the $x^{5}+2 x^{4}+2 x^{3}+x=0$ is
(i) 2
(ii) -2
(iii) 1
(iv) -1
3. The cofactor of -2 in the matrix $\left(\begin{array}{cc}4 & -2 \\ 1 & 3\end{array}\right)$ is
(i) 3
(ii) -4
(iii) -1
(iv) 1
4. The rank of the matrix $\left(\begin{array}{rr}3 & -7 \\ -3 & 7\end{array}\right)$ is
(i) 0
(ii) 1
(iii) 2
(iv) None of these
5. If A is a 3×3 matrix and $|A|=3$, then $|3 A|=$
(i) 3
(ii) 9
(iii) 27
(iv) 81
6. If $\left(\begin{array}{rrr}1 & 2 & 0 \\ 8 & x & -1 \\ 2 & 4 & 5\end{array}\right)=\left(\begin{array}{rrr}1 & 2 & 0 \\ 8 & 9 & -1 \\ 2 & 4 & 5\end{array}\right)$, then the value of x is
(i) 0
(ii) 2
(iii) 9
(iv) 5
7. If $A=\left(\begin{array}{rrr}1 & 0 & 0 \\ 2 & -3 & 0 \\ 4 & 5 & 6\end{array}\right)$, then $|A|$ is
(i) 1
(ii) 4
(iii) -1
(iv) -18
8. If $z=a+i b$ then $z+2 \bar{z}$ is
(i) $4 a$
(ii) 2 a
(iii)ib
(iv) 2 ib
9. The real part of $\frac{2-3 i}{2+i}$ is
(i) $\frac{1}{5}$
(ii) $\frac{7}{5}$
(iii) $-\frac{1}{5}$
(iv) $-\frac{2}{5}$
10. $(\cos \theta+i \sin \theta)^{n}=$
(i) $\operatorname{cosn} \theta+i \sin n \theta$
(ii) $\operatorname{cosn} \theta-i \operatorname{sinn} \theta$
(iii) $e^{i n} \theta$
(iv) None of these
11. $\sin \theta=$
(i) $\frac{e^{i \theta}+e^{-i \theta}}{2}$
(ii) $\frac{e^{i \theta}-e^{-i \theta}}{2}$
(iii) $e^{i \theta}-e^{-i \theta}$
(iv) $e^{i \theta}+e^{-i \theta}$
12. The value of $\cosh 0$ is
(i) 1
(ii) $\frac{1}{2}$
(iii) 0
(iv) $\frac{1}{\sqrt{2}}$
13. Which of the following is true?
(i) $\operatorname{sinix}=\sinh x$
(ii) $\operatorname{cosix}=\cosh x$
(iii) $\operatorname{tanix}=\tanh x$
(iv) $\operatorname{cotix}=\operatorname{coth} x$
14. Which of the following is not true?
(i) $e^{\theta}+e^{-\theta}=2 \cosh \theta$
(ii) $e^{\theta}-e^{-\theta}=2 \sinh \theta$
(iii) $e^{i \theta}=\cos \theta+i \sin \theta$
(iv) $e^{\theta}-e^{-\theta}=2 i \sinh \theta$
15. Modulus of $-\sqrt{3}-i$ is
(i) 1
(ii) 2
(iii) 3
(iv) 4
16.If α, β, γ are the roots of the equation $x^{3}+p x^{2}+q x+r=0$ the $\alpha \beta \gamma=$?
(i) p
(ii) q
(iii) r
(iv) $-r$
16. The middle term in the expansion of $(a+x)^{n}$, when n is even is
(i) $C_{n / 2}^{n} a^{n / 2} x^{n / 2}$
(ii) $C_{n / 2}^{n} a^{n} x^{n / 2}$
(iii) $C_{n / 2}^{n} a^{n / 2} x^{n}$
(iv) $C_{n / 2}^{n} a^{n} x^{n}$
17. The general term T_{r+1} in the expansion of $(a+x)^{n}$ is
(i) $C_{r}^{n} a^{n-r} x^{r}$
(ii) $C_{r}^{n} a^{r} x^{n-r}$
(iii) $C_{n / 2}^{n} a^{n / 2} x^{n}$
(iv) $C_{n / 2}^{n} a^{n} x^{n}$
18. Which of the following is correct?
(i) $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \infty$
(ii) $e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots \infty$
(iii) $e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{4}}{4}+\ldots . \infty$
(iv) $e^{x}=1+x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots . \infty$
20.If A and B are two square matrix of same order and $A B=B A=I$, then which of the following is correct,
(i) $B=\frac{\operatorname{adj} A}{|A|}$
(ii) $B=a d j A$
(iii) $B=\frac{\operatorname{adj} A}{|B|}$
(iv) $A=\frac{\operatorname{adj} B}{|A|}$
