REV-00 BSE/07/12

2015/12

B.Sc. ELECTRONICS First Semester MATHEMATICS-I (BSE - 104)

Duration: 3Hrs.

Full Marks: 70

Part-A (Objective) =20 Part-B (Descriptive) =50

(PART-B: Descriptive)

Duration: 2 hrs. 40 mins.

Marks: 50

(5+5=10)

I. Answer any *five* of the following questions:

1. Find the modulus and argument of the complex numbers, $\frac{1+i}{1-i}$ and $\frac{2+3i}{i}$. (6+4=10)

Express $\frac{(\cos\theta + \sin\theta)^8}{(\sin\theta + \cos\theta)^4}$ in the form x+iy.

- 2. (i) Find the middle term of $(x+2)^7$ and $\left(2x+\frac{1}{x}\right)^{14}$.
 - (ii) Show that

$$\left(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots \infty\right) - \left(x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots \infty\right) = 1$$

3. (i) Solve the equation $2x^3 + 3x^2 - 32x - 48 = 0$, given that the sum of any two roots are zero.

(ii) Solve the equation $2x^3 - 3x^2 - 6x + 8 = 0$, given that the roots are in A. P. (5+5=10) 4. Write any two properties of (i) matrix multiplication and (ii) transpose of matrix.

Find *AB* and *BA*, where, $A = \begin{pmatrix} 2 & 1 & 3 \\ -1 & 4 & -6 \\ 7 & 1 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 4 & 5 \\ 0 & 2 & 1 \end{pmatrix}$. (4+6=10)

5. Solve the following system of equations x+y+z=6, x+2z=7, 3x+y+z=12 by using
(i) matrix method (ii) Cramer's rule. (5+5=10)

6. Define inverse of a square matrix. Find A^{-1} , where $A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ -1 & 2 & 3 \end{pmatrix}$. Prove AB = BA = I,

where
$$B = \frac{adjA}{|A|}$$
. (2+6+2=10)

7. Separate the following into real and imaginary part: $(2 \times 5 = 10)$ (i) sin(x+iy)(ii) cos(x+iy)(iii) tan(x+iy)(iv) cot(x+iy)(v) sec(x+iy)(vi) cosec(x+iy)

8. Express, (i) $\sin^7 \theta$ as a sum of sines of multiples of θ .

(ii) $\cos^8 \theta$ as a sum of cosines of multiples of θ .

(5+5=10)

REV-00 BSE/07/12

2015/12

B.Sc. ELECTRONICS First Semester MATHEMATICS-I (BSE - 104)

Duration: 20 minutes

(PART A - Objective Type)

(iv) None of these

(iv) 81

I. Choose the correct answer:

- 1. Sum of the roots of the equation $x^5 + 3x^4 + 4x^3 + 12 = 0$ is (i) 3 (ii) -3 (iii) 1 (iv) -1
- 2. Sum of the products of the roots taken two at a time of the $x^5 + 2x^4 + 2x^3 + x = 0$ is (i) 2 (ii) -2 (iii) 1 (iv) -1
- 3. The cofactor of -2 in the matrix $\begin{pmatrix} 4 & -2 \\ 1 & 3 \end{pmatrix}$ is (i) 3 (ii) -4 (iii) -1 (iv) 1
- 4. The rank of the matrix $\begin{pmatrix} 3 & -7 \\ -3 & 7 \end{pmatrix}$ is (i) 0 (ii) 1 (iii) 2
- 5. If A is a 3×3 matrix and |A| = 3, then |3A| =(i) 3 (ii) 9 (iii) 27
- 6. If $\begin{pmatrix} 1 & 2 & 0 \\ 8 & x & -1 \\ 2 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 0 \\ 8 & 9 & -1 \\ 2 & 4 & 5 \end{pmatrix}$, then the value of x is
 - (i) 0 (ii) 2 (iii) 9 (iv) 5
- 7. If $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & -3 & 0 \\ 4 & 5 & 6 \end{pmatrix}$, then |A| is (i) 1 (ii) 4 (iii) -1 (iv) -18
- 8. If z = a + ib then $z + 2\overline{z}$ is (i) 4a (ii)2a (iii)ib (iv)2ib

Marks-20

1×20=20

9. The real part of (i) $\frac{1}{2}$	of $\frac{2-3i}{2+i}$ is	$(iii) - \frac{1}{2}$	$(iv) - \frac{2}{2}$		
$\frac{(1)}{5}$ 10.(cos θ + isin θ)	$n^n =$	5	5	duki s	
(i) $cosn\theta + isinn\theta$ (ii) $costantial(iii) e^{in}\theta(iv) Note$		(ii) cosn (iv) None	$n\theta - isinn\theta$ ne of these		
$11.sin\theta =$ (i) $\frac{e^{i\theta} + e^{-i\theta}}{2}$	(ii) $\frac{e^{i\theta}}{d\theta}$	$\frac{-e^{-i\theta}}{2}$	(iii) $e^{i\theta} - e^{-i\theta}$	(iv) $e^{i\theta} + e^{-i\theta}$	
12.The value of (i) 1	cosh0 is (ii) <u>1</u>		(iii) 0	$(iv)\frac{1}{\sqrt{2}}$	
 13. Which of the following is true? (i) sinix = sinhx (iii) tanix = tanhx 			(ii) $cosix = coshx$ (iv) $cotix = cothx$		
14. Which of the following is not true? (i) $e^{\theta} + e^{-\theta} = 2cosh\theta$ (iii) $e^{i\theta} = cos\theta + isin\theta$			(ii) $e^{\theta} - e^{-\theta} = 2sinh\theta$ (iv) $e^{\theta} - e^{-\theta} = 2isinh\theta$		
15.Modulus of - (i) 1	$\begin{array}{c} \sqrt{3} - i \text{ is} \\ \text{(ii) 2} \end{array} $	(iii) 3	(iv) 4		
16.If α, β, γ are the roots of the equation $x^3 + px^2 + qx + r = 0$ the $\alpha\beta\gamma = ?$ (i) p (ii) q (iii) r (iv) $-r$					
17. The middle te (i) $C_{\frac{n}{2}}^{n} a^{\frac{n}{2}} x^{\frac{n}{2}}$	rm in the expanding (ii) $C_{\gamma_2}^n$	nsion of $(a + \frac{1}{2}a^n x^{\frac{n}{2}})$	$(x^{n})^{n}$, when <i>n</i> is ev (iii) $C_{n/2}^{n} a^{n/2} x^{n}$	en is (iv) $C_{\frac{n}{2}}^{n}a^{n}x^{n}$	
18. The general te (i) $C_r^n a^{n-r} x^r$	erm T_{r+1} in the e (ii) C_r^n	expansion of $a^r x^{n-r}$	f $(a+x)^{n}$ is (iii) $C_{n/2}^{n} a^{n/2} x^{n}$	(iv) $C_{n/a}^n a^n x^n$	
19. Which of the	following is co r^2 r^3	rrect?	r ²	r ³	
(i) $e^x = 1 + x + \frac{1}{2}$ (iii) $e^x = 1 + x + \frac{1}{2}$	$\frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots \infty$ $+ \frac{x^{2}}{2!} + \frac{x^{4}}{1!} + \dots \infty$		(ii) $e^x = 1 + x + \frac{x}{2}$ (iv) $e^x = 1 + x + \frac{x^3}{2}$	$+\frac{x}{3}+\ldots\infty$ $+\frac{x^5}{2}+\ldots\infty$	
20 If 1 and P and	2 4	tuin of some	3	5	

- 20.If *A* and *B* are two square matrix of same order and *AB=BA=I*, then which of the following is correct,
 - (i) $B = \frac{adjA}{|A|}$ (ii) B = adjA (iii) $B = \frac{adjA}{|B|}$ (iv) $A = \frac{adjB}{|A|}$
