B.Sc. ELECTRONICS

First Semester
Mathematics-I
(BSE- 04)
Duration: 3Hrs.
Full Marks: 70
Part-A (Objective) $=\mathbf{2 0}$
Part-B (Descriptive) $=50$
(PART-B: Descriptive)
Duration: $\mathbf{2}$ hrs. 40 mins.
Marks: 50

1. Answer the following questions (any five)
$2 \times 5=10$
a) Define rank of a matrix.
b) Expand ----

$$
\left(1-x^{3}\right)^{6}
$$

c) Express into $\mathrm{a}+\mathrm{ib}$ form---

$$
(1-i)\left(1+\frac{1}{i}\right)
$$

d) Find the modulus of $(1-\mathrm{i})(2-\mathrm{i})$
e) If α, β, γ are the roots of the equation

$$
3 x^{3}+2 x-10=0
$$

find $\sum \alpha, \sum \alpha \beta$.
f) Resolve into factors

$$
\frac{2 x+5}{(x-1)(x-2)}
$$

g) Find the middle term of

$$
\left(\frac{x}{a}+\frac{a}{x}\right)^{10}
$$

2. Answer the following questions (any five)
a) Reduce into $\mathrm{A}+\mathrm{iB}$ form ---

$$
\frac{(2+i)^{2}}{3+2 i}
$$

b) Prove that

$$
(\cos 3 \theta+i \sin 3 \theta)(\cos \theta-i \sin \theta)=\cos \theta+i \sin \theta
$$

c) Solve the equation

$$
27 x^{3}+42 x^{2}-28 x-8=0
$$

whose roots are in GP
d) If α, β, Υ are the roots of the equation $x^{3}+p_{1} x^{2}+p_{2} x+p_{3}=0$, form the equation whose roots are multiplied with the same constant ' m '.
e) Without expanding show that

$$
\left|\begin{array}{lll}
b+c & c+a & a+b \\
q+r & p+q & p+q \\
x+y & z+x & x+y
\end{array}\right|=2\left|\begin{array}{lll}
a & b & c \\
p & q & r \\
x & y & z
\end{array}\right|
$$

f) Find the term independent of x in the expansion of $\left(\mathrm{x}+\frac{1}{x}\right)^{10}$.
g) Compute $A B$ where $A=\left[\begin{array}{l}2 \\ 4 \\ 0\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$

3. Answer the following questions (any five)

a) Expand $\cos 5 \theta$ in the powers of $\cos \theta$.
b) Solve the equation

$$
x^{3}-3 x^{2}-6 x+8=0
$$

whose roots are in AP.
c) If α, β, γ are the roots of the equation $x^{3}+p x+q=0$, find $\sum \frac{1}{\alpha+\beta}$.
d) Solve the following system by crammers rule---

$$
\begin{gathered}
x+y+z=4 \\
2 x-y+3 z=1 \\
3 x+2 y-z=1
\end{gathered}
$$

e) Find the inverse of

$$
\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right]
$$

f) With usual notations prove that

$$
C_{1}+2 C_{2}+3 C_{3}+\cdots+n C_{n}=n \cdot 2^{n-1}
$$

g) If $y=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots$,
show that $x=y+\frac{y^{2}}{2!}+\frac{y^{3}}{3!}+\cdots$

B.Sc. ELECTRONICS
 First Semester
 Mathematics-I

(BSE- 04)
(The figures in the margin indicate full marks for the questions)

PART A- Objective Type

1. Choose the correct option.
$1 \times 10=10$
(i) The amplitude of the complex number $z=x+i y$ is
(a) $\sqrt{x^{2}+y^{2}}$
(b) $x+y$
(c) $\tan ^{-1} \frac{x}{y}$
(d) $\tan ^{-1} \frac{y}{x}$
(ii) The real part of $\frac{(2+i)^{2}}{3+i}$ is
(a) $\frac{17}{13}$
(b) $\frac{6}{13}$
(c) $\frac{2}{5}$
(d) $\frac{2}{3}$
(iii) The value of $i+\frac{1}{i}$ is
(a) i
(b) -i
(c) 0
(d) 1
(iv) The value of $\cos \pi+i \sin \pi$ is
(a) 1
(b) -1
(c) 0
(d) i
(v) If $f(x)=x^{3}-3 x^{2}+4 x-5$, the value of $f(-1)$ is
(a) 1
(b) 16
(c) 18
(d) 20
(vi) If α, β, γ are the roots of the equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, the value of $\sum \alpha \beta$ is
(a) -b
(b) $\frac{c}{a}$
(c) -c
(d) $\frac{-c}{a}$
(vii) If A and B are two matrices of same order, then
(a) $A B=B A$ always
(b) $A B \neq B A$ always
(c) $A B>B A$ always
(d) $\mathrm{AB}=\mathrm{BA}$ never
(viii) The binomial coefficient in the expansion of $(1+\mathrm{x})^{\mathrm{n}}$ is
(a) 2^{n}
(b) $2^{n}-1$
(c) $2^{n}+1$
(d) 2^{n-1}
(ix) The coefficient of the nth term in the expansion of e^{x} is
(a) 1
(b) $\frac{1}{n!}$
(c) $\frac{1}{(n-1)!}$
(d) $\frac{1}{(n-21)!}$
(x) The value of e
(a) 2
(b) 2
(c) lies between 1 and 2
(d) lies between 2 and 3
2. Answer the followings---
(i) Write the binomial theorem for a positive integral index.
(ii) Write the general term of $\left(3-x^{2}\right)^{6}$.
(iii) Write the conjugate of $\mathrm{x}-2 \mathrm{i}$.
(iv) Simplify---- i^{6}
(v) What is the value of $(\cos \theta+\mathrm{i} \sin \theta)^{-\mathrm{n}}$
(vi) Write the expression for e^{x}
(vii) If α and β are the roots of a quadratic equation, write the equation in terms of α and β.
(viii) What is the rank of a null matrix?
(ix) What is the necessary and sufficient condition for a matrix A to possesses its inverse.
(x) What is the total no of terms in the expansion of $(a+x)^{n}$
