REV-00 BSE/08/14

B. Sc. ELECTRONICS First Semester Applied Physics (BSE-02)

Duration: 3Hrs.

(PART-B: Descriptive)

Duration: 2 hrs. 40 mins.

1. Write briefly on the following: (any five)

- a) What are the essential requirements for the satellite to be geostationary?
- b) What is viscosity? Find its expression.
- c) Explain why the path of a spinning ball through air becomes curved.
- d) Find the moment of inertia of a circular ring
 - About an axis through its centre and perpendicular to its plane i.
 - About its diameter. ii.
- e) What is resonance? State its conditions.
- f) What is the principle of sonar system?
 - g) Two aeroplanes A and B are approaching towards each other and their velocities are 108 km/hr and 144 km/hr respectively. The frequency of a note emitted by A as heard by the passenger in B is 1170 Hz. Calculate the frequency of the note heard by the passenger in A.

2. Answer the following questions: (any five)

- a) State Keplar's three law of planetary motion.
- b) State and prove Bernoulli's theorem.
- c) Calculate the moment of inertia of a rectangular lamina about an axis through its centre and parallel to one of its sides.
- d) Define surface tension. Write the molecular theory of surface tension (1+2)
- $K = \frac{Y}{3(1-2\sigma)}$ e) Derive the relation

2014/01

Marks: 50

 $2 \times 5 = 10$

Full Marks: 70

3×5=15

f) Show that total energy of a Simple Harmonic Motion is

$$E = \frac{1}{2}m\omega^2 r^2.$$

g) The displacement of a wave is represented by,

 $y = 0.25 \times 10^{-3} \sin (500t - 0.025x),$

Where y, t and x are expressed in cm, second and meter respectively. Calculate,

a) Amplitude

b) Time period

c) Angular frequency.

3. Answer the following in details: (any five)

a) Find the moment of inertia of a solid sphere

i. About its diameter

- ii. About a tangent
- b) Find the gravitational potential due to a spherical shell at a point outside it. 5

4+1=5

5 5

- c) Discuss the working principle of a siphon. Mention the sondition for working of a siphon.
 3+2=5
- d) Define capillarity. How the surface tension can be determined using the action of capillarity.
 1+4=5
- e) What is compound pendulum? Derive the time period for the compound pendulum. 1+4=5

- f) Derive the equation for the amplitude of a forced vibration
- g) Prove that,

Twisting couple of a cylinder = $\frac{\pi \eta \theta}{2l} a^4$

Where the symbols have usual meaning.

REV-00 BSE/08/14

> B. Sc. ELECTRONICS First Semester Applied Physics (BSE-02)

(The figures in the margin indicate full marks for the questions)

Duration: 20 minutes

Marks-20

PART A- Objective Type

Choose the correct answer from the following options. $1 \times 20 = 20$

- 1) When no external torque acts on a rotating body, then
 - a) Angular momentum decreases
 - b) Angular momentum increases
 - c) Angular momentum remains constant
 - d) Body stops rotating.

2) The ratio of acceleration due to gravity of earth to that of moon is

- a) 1:6
- b) 6:1
- c) 3:2d) 2:3
- u) 2.5
- 3) For how many points the time period of a compound pendulum are same?

a) 2 b) 3 c) 4 d) 5

4) The ratio of escape velocity to that of an orbital velocity is

- a) 1:2
- b) 2:1
- c) $1:\sqrt{2}$
- d) $\sqrt{2}$: 1

5) The gravitational field at the centre of a spherical shell

- a) Is directly proportional to the square of its radius
- b) Is inversely proportional to the square of its radius
- c) Remains constant throughout
- d) Is zero

6) Bending moment of a cantilever supported at both ends is,

- a) $\frac{Wl^3}{2}$
- 3YI Wl^2
- b) $\frac{Wl}{48YI}$
- c) $\frac{Wl^3}{2}$
- 48YI Wl
- d) $\frac{Wl}{3Yl}$

2014/01

- 7) Poisson's ratio of a body is defined as
 - longitudinal strain a) longitudinal stress
 - lateral strain
 - b) longitudinal strain longitudinal strain c)
 - lateralal strain lateral stress d)
 - longitudinal stress

8) The speed of efflux of a liquid through an orifice is equal to

- Escape velocity a)
- b) Orbital velocity of a planet
- Velocity of a freely falling body through a height h c)
- d) None of these
- 9) The ratio of excess of pressure inside a liquid drop to that of a soap bubble is
 - 1:2 a)
 - 1:1 b)
 - 2:1 c)
 - 1:4 d)

) In Bernoulli's theorem, which of the following is conserved?

- a) Mass
- b) Energy
- Linear momentum c)
- Angular momentum d)

11) The S.I. unit of coefficient of viscosity, η is

- Nsm⁻² a)
- Nms⁻² b)
- Ns⁻¹m⁻¹ c)
- Nsm⁻¹ d)

12) When there is no external forces, the shape of a liquid drop is determined by

- Surface tension a)
- Viscosity of the liquid b)
- c) Density of the liquid
- Temperature of air only d)

) The value of surface tension depends upon

- a) Nature of solid in contact with liquid
- b) Nature of liquid
- Both nature of solid and liquid in contact c)
- None of these d)

14) The relation between velocities with temperature is

a)
$$\frac{v_t}{T} = \left| \frac{T_t}{T} \right|$$

 $v_0 \sqrt{T_0}$ тт 1 >

b)
$$V_t V_0 = I_t I_0$$

- $\frac{v_t}{t} = \frac{T_t}{t}$ c) $v_0 T_0$
- $\mathbf{v}_t \cdot \mathbf{v}_0 = \sqrt{T_t \cdot T_0}$ d)

15) The natural frequency of 440mm length of a pure iron rod having $\rho = 7.25 \times 10^3 \text{kgm}^{-3}$ and $Y = 115 \times 10^9 \text{ Nm}^{-2}$ is,

- a) 4.02×10^2 Hz
- b) $3.525 \times 10^3 \text{ Hz}$
- c) $3.02 \times 10^2 \text{ Hz}$
- d) 4.525×10^3 Hz

16) A progressive wave is represented by

- a) $A = \sin \omega t$
- b) $A = \sin(\omega t) \cos(kt)$
- c) $A = \sin(\omega t kx)$
- d) $A = \cos kx$

17) Which of the following remains unchanged when the wave propagates from air to water?

- a) Velocity
- b) Wave length
- c) Frequency
- d) Intensity

18) Doppler's effect is exhibited by

- a) Sound waves only
- b) Light waves only
- c) Both light and sound waves
- d) Ultrasonics

19) Production of beat is due to

- a) Interference
- b) Diffraction
- c) Polarization
- d) Refraction

20) Ultrasonic waves are

- a) Longitudinal
- b) Transverse
- c) Vibrations of other particles
- d) Sometimes longtitudinal and sometimes transverse.