B. COM
 Second Semester BUSINESS MATHEMATICS
 (BCM- 07)

Duration: 3Hrs.
Full Marks: 70

> Part-A $($ Objective $)=\mathbf{2 0}$
> Part-B $($ Descriptive $)=50$

PART-B (Descriptive)

Duration: 2 hrs. 40 mins.
Marks: 50

1. Answer the following questions (any five):

a) Find the $18^{\text {th }}$ term of the series $2,4,6 \ldots$.
b) Find the value of $\log 32$, where $\log 2=0.03010$
c) Find the $8^{\text {th }}$ term of the series $4,12,36 \ldots$
d) Write any two properties of limits.
e) Evaluate $\frac{d}{d x}\left(3 x^{2}+4 x\right)$
f) Find the equation of a line passing through points $(4,2)$ and $(3,0)$.
g) Define null matrix. Give an example.
2. Answer the following questions (any five):
a) Examine the continuity at $\mathrm{x}=2$ of the following function,

$$
f(x)=\left\{\begin{array}{l}
2 x+3, x>2 \\
3 x+y, x \leq 2
\end{array}\right.
$$

b) Find the roots of the equation $x^{2}+35=11 x+5$
c) Find the area of the triangle whose vertices are $(-2,3),(6,2)$ and $(4,7)$.
d) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$, where $y=3 x^{4}+5 x^{3}+23 x+5$
e) The simple interest on a sum equals $\frac{1}{10}$ of itself in 4 years. Find the rate of interest.
f) If the $1^{\text {st }}$ term and $4^{\text {th }}$ term of G.P. series are 1 and 27 respectively then find sum of the series up to $10^{\text {th }}$ terms.
g) Show that $\left|\begin{array}{lll}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|=(b-c)(c-a)(a-b)(a+b+c)$
3. Answer the following questions (any five)
a) If a^{2}, b^{2}, c^{2} are in A.P. then show that $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P.
b) The length of a line segment whose end points are $(2,-3)$ and $(10, y)$ is 10 cm . Find y.
c) Solve the equations using Cramer's rule,
$x+y+z=3,2 x-y+4 z=5, x-3 y-9 z=-11$
d) Find maximum and minimum value of the function, $y=x^{3}-3 x^{2}-9 x+27$.
e) How many terms of the series, $27+24+21+18+\ldots$. Will add up to 126 ?
f) Find $A B$ and $B A$ if $A=\left(\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & -1 \\ -3 & 2\end{array}\right)$.
g) Solve the following LPP by graphical method:

$$
\begin{array}{ll}
\text { Maximize: } & z=3 x+4 y \\
\text { Subject to: } & 4 x+2 y \leq 80 \\
& 2 x+5 y \leq 180 \\
& x \geq 0, y \geq 0
\end{array}
$$

B. COM

Second Semester BUSINESS MATHEMATICS
 (BCM- 07)

(The figures in the margin indicate full marks for the questions)

Duration: 20 minutes
Marks - 20

(PART A- Objective)

Time: 20 mins
Total Marks: 20
I. Choose the correct answer from the following:

1. If a is the $1^{\text {st }}$ term and d is the common difference in a A.P. series then t_{n} is equal to
(a) $a+n d$
(b) $a+(n-1) d$
(c) $a+d$
(d) $d+(n-1) a$
2. The common difference of $1,3,5,7, \ldots$ is
(a) 2
(b) 3
(c) 4
(d) 5
3. Which one of the following series is in A.P. ?
(a) $9,27,81, \ldots$
(b) $7,37,47, \ldots$
(c) $6,4,8, \ldots$
(d) $57,61,65, \ldots$
4. The sum of the series $a, a r, a r^{2}, \ldots$ up to ∞ (infinite) is
(a) $\frac{1}{1-r}$
(b) $\frac{a}{1-r}$
(c) $\frac{a}{1+r}$
(d) $\frac{1}{1+r}$
5. The roots of $a x^{2}+b x+c=0$ are equal if
(a) $b^{2}=a c$
(b) $b^{2}>4 a c$
(c) $b^{2}=4 a c$
(d) $b^{2}<4 a c$
6. The roots of $a x^{2}+b x+c=0$ are imaginary and unequal if
(a) $b^{2}=a c$
(b) $b^{2}>4 a c$
(c) $b^{2}=4 a c$
(d) $b^{2}<4 a c$
7. The value of $\log 1$ is
(a) 0
(b) 1
(c) 2
(d) 3
8. The slope of the line passing through two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is
(a) $\frac{x_{1}-x_{2}}{y_{1}}$
(b) $\frac{x_{1}-x_{2}}{y_{2}}$
(c) $\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$
(d) $\frac{y_{1}+y_{2}}{x_{1}+x_{2}}$
9. Which one of the following series is in G.P. ?
(a) $9,27,81, \ldots$
(b) $7,37,47, \ldots$
(c) $6,4,8, \ldots$
(d) $57,61,65, \ldots$
10. Which one of the following matrix is a diagonal matrix ?
(a) $\left(\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right)$
(b) $\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$
(c) $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
(d) $\left(\begin{array}{ll}0 & 0 \\ 2 & 0\end{array}\right)$
11. Which one of the following matrix is a row matrix ?
(a) $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$
(b) $\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$
(c) $\left(\begin{array}{lll}1 & 3 & 4\end{array}\right)$
(d) $\left(\begin{array}{ll}0 & 0 \\ 2 & 0\end{array}\right)$
12. Which one of the following matrix is a column matrix ?
(a) $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$
(b) $\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$
(c) $\left(\begin{array}{lll}1 & 3 & 4\end{array}\right)$
(d) $\left(\begin{array}{ll}0 & 0 \\ 2 & 0\end{array}\right)$
13. The value of $\lim _{x \rightarrow 2} x^{2}$ is
(a) 4
(b) 5
(c) 6
(d) 7
14. The value of $\frac{d x^{n}}{d x}$ is
(a) $n x$
(b) x^{n}
(c) $n x^{n-1}$
(d) $n x^{1-n}$
15.If P is the principal, r is the rate of interest, then the simple interest in n years is
(a) $\frac{\operatorname{Pr} n}{100}$
(b) $\frac{100}{\operatorname{Pr} n}$
(c) $\frac{100}{\mathrm{Pr}}$
(d) $\frac{\mathrm{Pr}}{100}$
16.If P is the principal, r is the rate of interest, then the compound interest in n years is
(a) $\frac{\operatorname{Pr} n}{100}$
(b) $\frac{100}{\operatorname{Pr} n}$
(c) $P\left(1+\frac{r}{100}\right)^{n}$
(d) $P\left(1+\frac{r}{100}\right)$
15. The size of the matrix $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$
(a) 1×3
(b) 3×1
(c) 1×1
(d) none of these
18.Differentiation of a constant ' c ', i.e. $\frac{d c}{d x}$ is equal to
(a) 0
(b) 1
(c) 2
(d) 3
16. $\frac{d}{d x} \log x$ is equal to
(a) x
(b) $\frac{1}{x}$
(c) x^{2}
(d) None of these
20.A linear function in three variable is of the form
(a) $a x+b y(a \neq 0)$
(b) $a x+b y+c(a \neq 0, b \neq 0)$
(c) $a x+b y+c z+d(d \neq 0)$
(d) $a x+b y+c z+d(a \neq 0, b \neq 0, c \neq 0)$
