BACHELOR OF COMPUTER APPLICATION

Second Semester

Discrete mathematics
(BCA - 09)

Duration: 3Hrs.
Full Marks: 70

(PART-B: Descriptive)

Duration: $\mathbf{2}$ hrs. 40 mins.

Marks: 50

1. Answer the following (Any five)
$2 \times 5=10$
a. The sum of the degrees of all vertices of a graph is an even integer.
b. Does there exist a simple graph with five vertices having degree 2, 2,4,4,4? Justify.
c. Make the truth table of the following

$$
(p \rightarrow q) \rightarrow(\sim q \rightarrow \sim p)
$$

d. Show that $f(x)=7 x+5$ is one-one, where f is a function from R to R.
e. If $f: R \rightarrow R_{+}$is a function, define by $f(x)=e^{x}$, then show that f is homomorphism. (Where R is the additive group of real numbers \& R_{+}is the multiplicative group of real numbers)
f. If $A=\{2,3,4,5\}, B=\{4,5,6\}$ then fine $A \backslash B$.
g. If R is a ring prove that

$$
\begin{aligned}
& \text { i. } a(-b)=-a b \\
& \text { ii. } a(b-c)=a b-a c
\end{aligned}
$$

a. If I be the set of integers and $R=\{(x, y): x-y$ is divisible by $5 ; x, y \in I\}$. Then show that R is and equivalence relation on I .
b. Prove that a non -empty subset H of a group G is a subgroup of G if $a b^{-1} \in H$, $\forall \mathrm{a}, \mathrm{b} \in \mathrm{H}$
c. Define the homomorphism of a group. If $f: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ is a homomorphism, Then prove That $f\left(a^{-1}\right)=f(a)^{-1} \quad \forall \mathrm{a} \in \mathrm{G}$
d. How many vertices are there in a graph with 15 edges if each vertices is of degree 3 ?
e. Prove that every connected graph has at least one spanning tree.
f. Determine whether the following statements are tautology, contradiction or Contingents.

$$
\mathrm{p} \rightarrow\left(\mathrm{q} \rightarrow\left(\mathrm{p}^{\wedge} \mathrm{q}\right)\right)
$$

g. Draw a circuit diagram of the Boolean expression

$$
x y z^{\prime}+x y^{\prime} z+x^{\prime} y^{\prime} z^{\prime}
$$

3. Answer the following (Any five)

$5 \times 5=25$
a. Prove that if f is a homomorphism from G into G^{\prime} with kernel K , then K is normal.
b. Construct a logical circuit of the following Boolean expressions

$$
\begin{aligned}
& \text { i. } x^{\prime} y z+x y z^{\prime}+x^{\prime} y z^{\prime}+x^{\prime} y^{\prime} z+x^{\prime} y^{\prime} z^{\prime} \\
& \text { ii. } x y^{\prime}+y\left(x^{\prime}+y\right)
\end{aligned}
$$

c. Prove that a tree with n vertices contains exactly $n-1$ edges.
d. Prove that if a connected graph G is Eulerian, then every vertex of G has even degree.
e. Show that the set of all positive rational numbers forms and abelian group under the composition defined by $a * b=(a b) / 2$
f. Prove that a ring R is without zero divisors if and only if the cancellation laws hold in R.
g. If R is a relation in NxN defined by

$$
(a, b) R(c, d) \text { if } a d=b c
$$

Prove that R is an equivalence relation in NxN (where N is the set of natural numbers).

BACHELOR OF COMPUTER APPLICATION
 Second Semester
 Discrete mathematics

(BCA - 09)
(The figures in the margin indicate full marks for the questions)

ration: $\mathbf{2 0}$ minutes

Marks - 20

PART A- Objective Type

I. Answer each of the following:
$1 \times 20=20$

1. If $A=\{2 n: n \in N, n<6\}$, then $A \cup N$ is
a. A
b. R
c. N
d. None of these
2. Which of the following is false?
a. $A^{c} \cap B^{c}=A \backslash B$
b. $A \cap B^{c}=A \backslash B$
c. $A^{c} \cap A=\mathrm{U}$
d. None of these
3. Every cyclic group is abelian.
4. Intersection of two subgroups is a subgroup.

True/False
5. In a graph there are even number of vertices of odd degree.
6. A walk with no repeated edges is called a trail.
7. For a Boolean algebra which of the following is false
a. $\mathrm{a} .1=\mathrm{a}$
b. $a+1=1$
c. $a+a=a$
d. $\mathrm{a} . \mathrm{a}=1$
8. $a+b^{\prime}=1$ if and only if
a. $a+b=a$
b. $a+b=b$
c. $a+b=0$
d. $a+b=1$
9. The simplest Boolean expression of $\left\{(x+y)\left(x+y^{\prime}\right) y+x\right\} x+y y^{\prime}$ is
a. x
b. $x+y$
c. y
d. x^{\prime}
10. If $f: R \rightarrow R$ defined by $f(x)=2 x+3$, then
a. f is one-one
b. f is onto
c. f is both one-one \& onto
d. None of these
11. A subset H of a group G is a subgroup of G if
a. $\mathrm{a} b^{-1} \in \mathrm{H}, \forall \mathrm{a}, \mathrm{b} \in \mathrm{H}$
b. $a b \in H, \forall a, b \in H$
c. . $\mathrm{a} b^{-1} \in \mathrm{H}, \forall \mathrm{a}, \mathrm{b} \in \mathrm{G}$
d. $a b \in H, \forall a, b \in G$
12. If f is a homomorphism, then it will be an isomorphism if
a. f is one-one
b. f is onto
c. f is both one-one\& onto
d. None of these
13. A ring R is without zero divisors if for $a, b \in R$
a. $a b=0 \Rightarrow a=0$ or $b=0$
b. $a b=0=>a \neq 0$ or $b \neq 0$
c. $a b=0=>a \neq 0$ or $b=0$
d.None of these
14. If $n \in N$, then $1+2+3+\ldots . .+n$ is
a. $\frac{n(n-1)}{2}$
b. $\frac{n(n+1)}{2}$
c. $\frac{n}{2}$
d. $\frac{n^{2}}{2}$
15. If $\mathrm{f}(\mathrm{x})=3 \mathrm{x}+4$, then f^{-1} is
a. $\frac{x-4}{3}$
b. $x-4$
d. $4 x-3$
d. None of these
16. The identity element of a group is
a. unique
b. May not be unique
c. More then one
d. None of these
17. The set of natural number is a group w.r.t. addition.

True/False
18. Every one-one function is onto.

True/False
19. π is a rational number.

True/False
20. A graph is simple if it contains a loop.

